Skip to main content
Log in

Polarity Development in Oligodendrocytes: Sorting and Trafficking of Myelin Components

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

In vertebrates, myelination is required for the saltatory signal conductance along the axon. At the onset of myelination, the myelinating cells, i.e., oligodendrocytes in the central nervous system and Schwann cells in the peripheral nervous system, are heavily engaged in the biogenesis of membranes that are wrapped around the axon to form the myelin sheath. Although the membrane of the myelin sheath is continuous with the plasma membrane surrounding the cell body, the composition of both membrane domains is clearly distinct implying that myelinating cells are polarized cells. The coordinated manner of myelin sheath formation requires the existence of sorting and trafficking pathways to establish and maintain this highly polarized phenotype. Although in vitro data show that the formation of myelin-like membranes is an intrinsic property of oligodendrocytes, exogenous factors modulate myelination and are required for the subcompartmentation and compaction of the myelin sheath in vivo. In this paper, we discuss the sorting and trafficking of myelin proteins and lipids in oligodendrocytes in relation to polarity development and maintenance, including the role of exogenous factors, and give examples how the perturbation of trafficking pathways may contribute to the development of demyelinating diseases of the central nervous system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

Abbreviations

CGT:

ceramide galactosyl transferase

CHAPS:

3-[(3-chloramidopropyl)-dimethylammonio]-1-propane-sulfonate

CNP:

2’3’-cyclic nucleotide 3’-phosphodiesterase

CNS:

central nervous system

CNTF:

ciliary neurotrophic factor

CST:

cerebroside sulfotransferase

EAE:

experimental autoimmune encephalomyelitis

ECM:

extracellular matrix

ER:

endoplasmic reticulum

GalCer:

galactosylceramide

gp130:

glycoprotein130

GPI:

glycosylphosphatidyl inositol

GSL:

glycosphingolipid

ivHA:

influenza virus hemagglutinin

LIF:

leukemia inhibitory factor

MAG:

myelin associated glycoprotein

MAL:

myelin and lymphocyte protein

MARCKS:

myristoylated, alanine-rich C-kinase substrate

MBP:

myelin basic protein

MDCK:

Madin-Darby canine kidney

MOBP:

myelin-associated oligodendrocytic basic protein

MOG:

myelin/oligodendrocyte glycoprotein

MS:

multiple sclerosis

NCAM:

neuronal cell adhesion molecule

NF155:

neurofascin isoform of 155 kDa

OLG:

oligodendrocyte

OSP:

oligodendrocyte specific protein

PDGF:

platelet derived growth factor

PKA:

protein kinase A

PKC:

protein kinase C

PLP:

proteolipid protein

PMD:

Pelizaeus-Merzbacher disease

PNS:

peripheral nervous system

SNARE:

soluble N-ethyl maleimide sensitive factor attachment protein receptor

SPG2:

spastic paraplegia type 2

TGN:

trans-Golgi network

TJ:

tight junction

TX100:

triton X-100

VSVG:

vesicular stomatitis virus glycoprotein

ZO-1:

zonula occludens protein 1

References

  • Ait-Slimane, T., Trugnan, G., van IJzendoorn, S. C. D., & Hoekstra, D. (2003). Raft-mediated trafficking of apical resident proteins occurs in both direct and transcytotic pathways in polarized hepatic cells: role of distinct lipid microdomains. Molecular Biology of the Cell, 14, 611–624.

    Google Scholar 

  • Anitei, M., Ifrim, M., Ewart, M. A., et al. (2006). A role for Sec8 in oligodendrocyte morphological differentiation. Journal of Cell Science, 119, 807–818.

    PubMed  CAS  Google Scholar 

  • Anitei, M., & Pfeiffer, S. E. (2006). Myelin biogenesis: sorting out protein trafficking. Current Biology, 16, R418–R421.

    PubMed  CAS  Google Scholar 

  • Bansal, R., Winkler, S., & Bheddah, S. (1999). Negative regulation of oligodendrocyte differentiation by galactosphingolipids. Journal of Neuroscience, 19, 7913–7924.

    PubMed  CAS  Google Scholar 

  • Barbarese, E., Koppel, D. E., Deutscher, M. P., et al. (1995). Protein translation components are colocalized in granules in oligodendrocytes. Journal of Cell Science, 108, 2781–2790.

    PubMed  CAS  Google Scholar 

  • Baron, W., Colognato, H., & ffrench-Constant, C. (2005). Integrin-growth factor interactions as regulators of oligodendroglial development and function. Glia, 49, 467–479.

    Google Scholar 

  • Baron, W., de Jonge, J. C., de Vries, H., & Hoekstra, D. (1998). Regulation of oligodendrocyte differentiation: protein kinase C activation prevents differentiation of O2A progenitor cells towards oligodendrocytes. Glia, 22, 121–129.

    PubMed  CAS  Google Scholar 

  • Baron, W., de Vries, E. J., de Vries, H., & Hoekstra, D. (1999). Protein kinase C prevents oligodendrocyte differentiation: modulation of actin cytoskeleton and cognate polarized membrane traffic. Journal of Neurobiology, 41, 385–398.

    PubMed  CAS  Google Scholar 

  • Baron, W., Decker, L., Colognato, H., & ffrench-Constant, C. (2003). Regulation of integrin growth factor interactions in oligodendrocytes by lipid raft microdomains. Current Biology, 13, 151–155.

    PubMed  CAS  Google Scholar 

  • Baron, W., Shattil, S. J., & ffrench-Constant (2002). The oligodendrocyte precursor mitogen PDGF stimulates proliferation by activation of αvß3 integrins. EMBO Journal, 21, 1957–1966.

    PubMed  CAS  Google Scholar 

  • Bartsch, S., Montag, D., Schachner, M., & Bartsch, U. (1989). Immunohistological localization of the adhesion molecules L1, NCAM, and MAG in the developing and adult optic nerve of mice. Journal of Comparative Neurology, 284, 451–462.

    PubMed  CAS  Google Scholar 

  • Benjamins, J. A., & Nedelkoska, L. (1994). Maintenance of membrane sheets by cultured oligodendrocytes requires continuous microtubule turnover and Golgi transport. Neurochemical Research, 19, 631–639.

    PubMed  CAS  Google Scholar 

  • Benninger, Y., Colognato, H., Thurnherr, T., et al. (2006). β1-integrin signaling mediates premyelinating oligodendrocyte survival but is not required for myelination and remyelination. Journal of Neuroscience, 26, 7665–7673.

    PubMed  CAS  Google Scholar 

  • Bizzozero, O. A., Pasquini, J. M., & Soto, E. F. (1982). Differential effect of colchicine upon entry of proteins into myelin and myelin related membranes. Neurochemical Research, 7, 1415–1425.

    PubMed  CAS  Google Scholar 

  • Blaschuk, K. L., Frost, E. E., & ffrench-Constant, C. (2000). The regulation of proliferation and differentiation in oligodendrocyte progenitor cells by αV integrins. Development, 127, 1961–1969.

    PubMed  CAS  Google Scholar 

  • Boggs, J. M. (2006). Myelin basic protein: a multifunctional protein. Cellular and Molecular Life Sciences, 63, 1945–1961.

    PubMed  CAS  Google Scholar 

  • Bosio, A., Binzcek, E., Haupt, W. F., & Stoffel, W. (1998a). Composition and biophysical properties of myelin lipid define the neurological defects in galactocerebroside- and sulfatide-deficient mice. Journal of Neurochemistry, 70, 308–315.

    PubMed  CAS  Google Scholar 

  • Bosio, A., Binczek, E., & Stoffel, W. (1996). Functional breakdown of the lipid bilayer of the myelin membrane in central and peripheral nervous system by disrupted galactocerebroside synthesis. Proceedings of the National Academy of Sciences of the United States of America, 93, 13280–13285.

    PubMed  CAS  Google Scholar 

  • Bosio, A., Bussow, H., Adam, J., & Stoffel, W. (1998b). Galacto-sphingolipids and axono-glial interaction in myelin of the central nervous system. Cell and Tissue Research, 292, 199–210.

    PubMed  CAS  Google Scholar 

  • Bouverat, B. P., Krueger, W. H., Coetzee, T., Bansal, R., & Pfeiffer, S. E. (2000). Expression of rab GTP-binding proteins during oligodendrocyte differentiation in vitro. Journal of Neuroscience Research, 59, 446–453.

    PubMed  CAS  Google Scholar 

  • Braun, P. E., de Angelis, D., Shtybel, W. W., & Bernier, L. (1991). Isoprenoid modification permits 2′,3′-cyclic nucleotide 3′-phosphodiesterase to bind to membranes. Journal of Neuroscience Research, 30, 540–544.

    PubMed  CAS  Google Scholar 

  • Brown, M. C., Moreno, M. B., Bongarzone, E. R., Cohen, P. D., & Pasquini, J. M. (1993). Vesicular transport of myelin proteolipid and cerebroside sulfates to the myelin membrane. Journal of Neuroscience Research, 35, 402–408.

    PubMed  CAS  Google Scholar 

  • Brown, D. A., & Rose, J. K. (1992). Sorting of GPI-anchored proteins to glycolipid-enriched membrane subdomains during transport to the apical cell surface. Cell, 68, 533–544.

    PubMed  CAS  Google Scholar 

  • Brunner, C., Lassmann, H., Waehneldt, T. V., Matthieu, J. M., & Linington, C. (1989). Differential ultrastructural localization of myelin basic protein, myelin/oligodendroglial glycoprotein, and 2’,3’-cyclic nucleotide 3’-phosphodiesterase in the CNS of adult rats. Journal of Neurochemistry, 52, 296–304.

    PubMed  CAS  Google Scholar 

  • Burcelin, R., Rodriguez-Gabin, A. G., Charron, M. J., Almazan, G., & Larocca, J. N. (1997). Molecular analysis of the monomeric GTP-binding proteins in oligodendrocytes. Molecular Brain Research, 50, 9–15.

    PubMed  CAS  Google Scholar 

  • Buttery, P. C., & ffrench-Constant, C. (1999). Laminin-2/integrin interactions enhance myelin membrane formation by oligodendrocytes. Molecular and Cellular Neurosciences, 14, 199–212.

    PubMed  CAS  Google Scholar 

  • Carson, J. C., Worboys, K., Ainger, K., & Barbarese, E. (1997). Translocation of myelin basic protein mRNA in oligodendrocytes requires microtubules and kinesin. Cell Motility and the Cytoskeleton, 38, 318–328.

    PubMed  CAS  Google Scholar 

  • Charles, P., Reynolds, R., Seilhean, D., et al. (2002). Re-expression of PSA-NCAM by demyelinated axons: an inhibitor of remyelination in multiple sclerosis? Brain, 125, 1972–1979.

    PubMed  Google Scholar 

  • Chun, S. J., Rasband, M. N., Sidman, R. L., Habib, A. A., & Vartainen, T. (2003). Integrin-linked kinase is required for laminin-2 induced oligodendrocyte cell spreading and CNS myelination. Journal of Cell Biology, 163, 397–408.

    PubMed  CAS  Google Scholar 

  • Coetzee, T., Fujita, N., Dupree, J., et al. (1996). Myelination in the absence of galactocerebroside and sulfatide: normal structure with abnormal function and regional instability. Cell, 86, 209–219.

    PubMed  CAS  Google Scholar 

  • Colognato, H, ffrench-Constant, C., & Feltri, L. (2005). Human diseases reveal novel roles for neural laminins. Trends Neurol, 28, 480–486.

    CAS  Google Scholar 

  • Colognato, H., Galvin, J., Wang, Z., et al. (2007). Identification of dystroglycan as a second laminin receptor in oligodendrocytes, with a role in myelination. Development, 134, 1723–1736.

    PubMed  CAS  Google Scholar 

  • Colognato, H., Ramachandrappa, S., Olsen, I. M., & ffrench-Constant, C. (2004). Integrins direct Src family kinases to regulate distinct phases of oligodendrocyte development. Journal of Cell Biology, 167, 365–375.

    PubMed  CAS  Google Scholar 

  • Davis, S., Aldrich, T. H., Valenzuela, D. M., et al. (1991). The receptor for ciliary neurotrophic factor. Science, 253, 59–63.

    PubMed  CAS  Google Scholar 

  • De Angelis, D. A., & Braun, P. E. (1996). 2′,3′-Cyclic nucleotide 3′-phosphodiesterase binds to actin-based cytoskeletal elements in an isoprenylation-independent manner. Journal of Neurochemistry, 67, 943–951.

    Article  PubMed  Google Scholar 

  • De Vies, H., Schrage, C., Hoekstra, K., et al. (1993). Outstations of the Golgi complex are present in the processes of cultured rat oligodendrocytes. Journal of Neuroscience Research, 36, 336–343.

    Google Scholar 

  • De Vries, H., de Jonge, J. C., Schrage, C., van der Haar, M., & Hoekstra, D. (1997). Differential and cell development-dependent localization of myelin mRNAs in oligodendrocytes. Journal of Neuroscience Research, 47, 479–488.

    PubMed  Google Scholar 

  • De Vries, H., & Hoekstra, D. (2000). On the biogenesis of the myelin sheath: cognate polarized trafficking pathways in oligodendrocytes. Glycoconjugate Journal, 17, 181–190.

    PubMed  Google Scholar 

  • De Vries, H., Schrage, C., & Hoekstra, D. (1998). An apical-type trafficking pathway is present in cultured oligodendrocytes but the sphingolipid-enriched myelin membrane is the target of a basolateral-type pathway. Molecular Biology of the Cell, 9, 599–609.

    PubMed  Google Scholar 

  • DeBruin, L. S., Haines, J. D., Wellhauser, L. A., et al. (2005). Developmental partitioning of myelin basic protein into membrane microdomains. Journal of Neuroscience Research, 80, 211–225.

    PubMed  CAS  Google Scholar 

  • DeBruin, L. S., & Harauz, G. (2007). White matter rafting – Membrane microdomains in myelin. Neurochemical Research, 32, 213–228.

    PubMed  CAS  Google Scholar 

  • Demerens, C., Stankoff, B., Logak, M., et al. (1996). Induction of myelination in the central nervous system by electrical activity. Proceedings of the National Academy of Sciences of the United States of America, 93, 9887–9892.

    PubMed  CAS  Google Scholar 

  • Drubin, D. G., & Nelson, W. J. (1996). Origin of cell polarity. Cell, 84, 335–344.

    PubMed  CAS  Google Scholar 

  • Dubois-Dalcq, M., Behar, T., Hudson, L., & Lazzarini, R. A. (1986). Emergence of three myelin proteins in oligodendrocytes cultured without neurons. Journal of Cell Biology, 102, 384–392.

    PubMed  CAS  Google Scholar 

  • Dupree, J. L., Coetzee, T., Blight, A., Suzuki, K., & Popko, B. (1998). Myelin galactolipids are essential for proper node of Ranvier formation in the CNS. Journal of Neuroscience, 18, 1642–1649.

    PubMed  CAS  Google Scholar 

  • Dyer, C. A., & Benjamins, J. A. (1989). Organization of oligodendroglial membrane sheets. I: Association of myelin basic protein and 2’′,3’′-cyclic nucleotide 3’′-phosphohydrolase with cytoskeleton. Journal of Neuroscience Research, 24, 201–211.

    PubMed  CAS  Google Scholar 

  • Farooqui, A. A., & Mandel, P. (1977). Recent developments in the biochemistry of globoid and metachromatic leucodystrophies. Biomedicine, 26, 232–236.

    PubMed  CAS  Google Scholar 

  • Fitzner, D., Schneider, A., Kippert, A., et al. (2006). Myelin basic protein-dependent plasma membrane reorganization in the formation of myelin. EMBO Journal, 25, 5037–5048.

    PubMed  CAS  Google Scholar 

  • Frank, M., Schaeren-Wiemers, N., Schneider, R., & Schwab, M. E. (1999). Developmental expression pattern of the myelin proteolipid MAL indicates different functions of MAL for immature Schwann cells and in a late step of CNS myelinogenesis. Journal of Neurochemistry, 73, 587–597.

    PubMed  CAS  Google Scholar 

  • Frank, M., van der Haar, M. E., Schaeren-Wiemers, N., & Schwab, M. E. (1998). rMAL is a glycosphingolipid-associated protein of myelin and apical membranes of epithelial cells in kidney and stomach. Journal of Neuroscience, 18, 4901–4913.

    PubMed  CAS  Google Scholar 

  • Garbern, J. Y., Yool, D. A., Moore, G. J., et al. (2002). Patients lacking the major CNS myelin protein, proteolipid protein 1, develop length-dependent axonal degeneration in the absence of demyelination and inflammation. Brain, 125, 551–561.

    PubMed  Google Scholar 

  • Gielen, E., Baron, W., Vandeven, M., Steels, P., Hoekstra, D., & Ameloot, M. (2006). Rafts in oligodendrocytes: evidence and structure-function relationship. Glia, 54, 499–512.

    PubMed  Google Scholar 

  • Gieselmann, V. (2003). Metachromatic leukodystrophy: recent research developments. Journal of Child Neurology, 18, 591–594.

    PubMed  Google Scholar 

  • Griffiths, I., Klugmann, M., Andersen, T., Thomson, C., Vouykouklis, D., & Nave, K. A. (1998). Current concepts of PLP and its role in the nervous system. Microscopy Research and Technique, 41, 345–358.

    Google Scholar 

  • Gould, R. M., Freund, C. M., & Barbarese, E. (1999). Myelin-associated oligodendrocytic basic protein mRNAs reside at different subcellular locations. Journal of Neurochemistry, 73, 574–583.

    Google Scholar 

  • Gow, A., Southwood, C. M., Li, J. S., et al. (1999). CNS myelin and sertoli cell tight junction strands are absent in Osp/claudin-11 null mice. Cell, 99, 649–659.

    PubMed  CAS  Google Scholar 

  • Hayashi, T., & Su, T. P. (2004). Sigma-1 receptors at galactosylceramide-enriched lipid microdomains regulate oligodendrocyte differentiation. Proceedings of the National Academy of Sciences of the United States of America, 101, 14949–14954.

    PubMed  CAS  Google Scholar 

  • Hoekstra, D., Maier, O., van der Wouden, J. M., Ait-Slimane, T., & van IJzendoorn, S. C. D. (2003). Membrane dynamics and cell polarity: the role of sphingolipids. Journal of Lipid Research, 44, 869–877.

    PubMed  CAS  Google Scholar 

  • Honke, K., Hirahara, Y., Dupree, J., et al. (2002). Paranodal junction formation and spermatogenesis require sulfoglycolipids. Proceedings of the National Academy of Sciences of the United States of America, 99, 4227–4232.

    PubMed  CAS  Google Scholar 

  • Huber, L. A., Madison, D. L., Simons, K., & Pfeiffer, S. E. (1994). Myelin membrane biogenesis by oligodendrocytes. Developmental regulation of low molecular weight GTP-binding proteins. FEBS Letters, 347, 273–278.

    PubMed  CAS  Google Scholar 

  • Inoue, K. (2005). PLP1-related inherited dysmyelinating disorders: Pelizäus-Merzbacher disease and spastic paraplegia type 2. Neurogenetics, 6, 1–6.

    PubMed  CAS  Google Scholar 

  • Ishibashi, T., Dakin, K. A., Stevens, B., et al. (2006). Astrocytes promote myelination in response to electrical impulses. Neuron, 49, 823–832.

    PubMed  CAS  Google Scholar 

  • Ishibashi, T., Ding, L., Ikenaka, K., et al. (2004). Tetraspanin protein CD9 is a novel paranodal component regulating paranodal junctional formation. Journal of Neuroscience, 24, 96–102.

    PubMed  CAS  Google Scholar 

  • Jahn, R., & Südhof, T. C. (1999). Membrane fusion and exocytosis. Annual Review of Biochemistry, 68, 863–911.

    CAS  Google Scholar 

  • Kim, T., & Pfeiffer, S. E. (1999). Myelin glycosphingolipid/cholesterol-enriched microdomains selectively sequester the noncompact myelin proteins CNP and MOG. Journal of Neurocytology, 28, 281–293.

    PubMed  Google Scholar 

  • Kippert, A., Trajkovic, K., Rajendran, L., Ries, J., & Simons, M. (2007). Rho regulates membrane transport in the endocytic pathway to control plasma membrane specialization in oligodendroglial cells. Journal of Neuroscience, 27, 3560–3570.

    PubMed  CAS  Google Scholar 

  • Kirschning, E., Rutter, G., & Hohenberg, H. (1998). High-pressure freezing and freeze-substitution of native rat brain: suitability for preservation and immunoelectron microscopic localization of myelin glycolipids. Journal of Neuroscience Research, 53, 465–474.

    PubMed  CAS  Google Scholar 

  • Klunder, B., Baron, W., Schrage, C., de Jonge, J., de Vries, H., & Hoekstra, D. (in press). Sorting signals and regulation of cognate basolateral trafficking in myelin biogenesis. Journal of Neurochemical Research.

  • Knepper, M. A., & Inoue, T. (1997). Regulation of aquaporin-2 water channel trafficking by vasopressin. Current Opinion in Cell Biology, 9, 560–564.

    PubMed  CAS  Google Scholar 

  • Kobayashi, H., Hoffman, E. P., & Marks, H. G. (1994). The rumpshaker mutation in spastic paraplegia. Nature Genetics, 7, 351–352.

    PubMed  CAS  Google Scholar 

  • Kobayashi, T., Storrie, B., Simons, K., & Dotti, C. G. (1992). A functional barrier to movements of lipids in polarized neurons. Nature, 359, 647–650.

    PubMed  CAS  Google Scholar 

  • Koeppen, A. H., & Robitaille, Y. (2002). Pelizäus-Merzbacher disease. Journal of Neuropathology and Experimental Neurology, 61, 747–759.

    PubMed  Google Scholar 

  • Komaki, H., Sasaki, M., Yamamoto, T., Iai, M., & Takashima, S. (1999). Connatal Pelizäus Merzbacher disease associated with the jimpy(msd) mice mutation. Pediatric Neurology, 20, 309–311.

    PubMed  CAS  Google Scholar 

  • Krämer, E. M., Klein, C., Koch, T., Boytinck, M., & Trotter, J. (1999). Compartmentation of Fyn kinase with glycosylphosphatidylinositol-anchored molecules in oligodendrocytes facilitates kinase activation during myelination. Journal of Biological Chemistry, 274, 29042–29049.

    PubMed  Google Scholar 

  • Krämer, E. M., Koch, T., Niehaus, A., & Trotter, J. (1997). Oligodendrocytes direct glycosyl phosphatidylinositol-anchored proteins to the myelin sheath in glycosphingolipid-rich complexes. Journal of Biological Chemistry, 272, 8937–8945.

    PubMed  Google Scholar 

  • Krämer, E. M., Schardt, A., & Nave, K. A. (2001). Membrane traffic in myelinating oligodendrocytes. Microscopy Research and Technique, 52, 656–671.

    PubMed  Google Scholar 

  • Krämer-Albers, E. M., Gehrig-Burger, T., Thiele, C., Trotter, J., & Nave, K. A. (2006). Perturbed interactions of mutant proteolipid protein/DM20 with cholesterol and lipid rafts in oligodendroglia: implications for dysmyelination in spastic paraplegia. Journal of Neuroscience, 26, 11743–11752.

    PubMed  Google Scholar 

  • Kroepfl, J. F., & Gardinier, M. V. (2001). Mutually exclusive apicobasolateral sorting of two oligodendroglial membrane proteins, proteolipid protein and myelin/oligodendrocyte glycoprotein, in Madin-Darby canine kidney cells. Journal of Neuroscience Research, 66, 1140–1148.

    PubMed  CAS  Google Scholar 

  • Laezza, C., Wolff, J., & Bifulco, M. (1997). Identification of a 48-kDa prenylated protein that associates with microtubules as 2′,3′-cyclic nucleotide 3′-phosphodiesterase in FRTL-5 cells. FEBS Letters, 413, 260–264.

    PubMed  CAS  Google Scholar 

  • Lafont, F., Verkade, P., Galli, T., Wimmer, C., Louvard, D., & Simons, K. (1999). Raft association of SNAP receptors acting in apical trafficking in Madin-Darby canine kidney cells. Proceedings of the National Academy of Sciences of the United States of America, 96, 3734–3738.

    PubMed  CAS  Google Scholar 

  • Larocca, J. N., & Rodriguez-Gabin, A. G. (2002). Myelin biogenesis: Vesicle transport in oligodendrocytes. Neurochemical Research, 27, 1313–1329.

    PubMed  CAS  Google Scholar 

  • Lee, J., Gravel, M., Zhang, R., Thibault, P., & Braun, P. E. (2005). Process outgrowth in oligodendrocytes is mediated by CNP, a novel microtubule assembly protein. Journal of Cell Biology, 170, 661–673.

    PubMed  CAS  Google Scholar 

  • Li, X., Ionescu, A. V., Lynn, B. D., et al. (2004). Connexin47, connexin29 and connexin32 co-expression in oligodendrocytes and Cx47 association with zonula occludens-1 (ZO-1) in mouse brain. Neuroscience, 126, 611–630.

    PubMed  CAS  Google Scholar 

  • Low, S. H., Chapin, S. J., Wimmer, C., et al. (1998). The SNARE machinery is involved in apical plasma membrane trafficking in MDCK cells. Journal of Cell Biology, 141, 1503–1513.

    PubMed  CAS  Google Scholar 

  • Lütjohan, D., Harzer, K., Gieselmann, V., & Eckhardt, M. (2006). Reduced brain cholesterol content in arylsulfatase A-deficient mice. Biochemical and Biophysical Research Communications, 344, 647–650.

    Google Scholar 

  • Madison, D. L., Krüger, W. H., Cheng, D., Trapp, B. D., & Pfeiffer, S. E. (1999). SNARE complex proteins, including the cognate pair VAMP-2 and syntaxin-4, are expressed in cultured oligodendrocytes. Journal of Neurochemistry, 72, 988–998.

    PubMed  CAS  Google Scholar 

  • Madison, D. L., Krüger, W. H., Coetzee, T., Bansal, R., & Pfeiffer, S. E. (1996). Differential expression of rab3 isoforms in oligodendrocytes and astrocytes. Journal of Neuroscience Research, 45, 258–268.

    PubMed  CAS  Google Scholar 

  • Maggipinto, M., Rabiner, C., Kidd, G. J., Hawkins, A. J., Smith, R., & Barbarese, E. (2004). Increased expression of the MBP mRNA binding protein hnRNP A2 during oligodendrocyte differentiation. Journal of Neuroscience Research, 75, 614–623.

    PubMed  CAS  Google Scholar 

  • Maier, O., Baron, W., & Hoekstra, D. (2007). Reduced raft-association of NF155 in active MS-lesions is accompanied by the disruption of the paranodal junction. Glia, 55, 885–895.

    PubMed  Google Scholar 

  • Maier, O., & Hoekstra, D. (2003). Trans-Golgi network and subapical compartment of HepG2 cells display different properties in sorting and exiting of sphingolipids. Journal of Biological Chemistry, 278, 164–173.

    PubMed  CAS  Google Scholar 

  • Maier, O., van der Heide, T., Johnson, R., de Vries, H., Baron, W., & Hoekstra, D. (2006). The function of neurofascin155 in oligodendrocytes is regulated by metalloprotease-mediated cleavage and ectodomain shedding. Experimental Cell Research, 312, 500–511.

    Article  PubMed  CAS  Google Scholar 

  • Maier, O., van der Heide, T., van Dam, A. M., Baron, W., de Vries, H., & Hoekstra, D. (2005). Alteration of the extracellular matrix interferes with raft-association of neurofascin in oligodendrocytes. Potential significance for multiple sclerosis? Molecular and Cellular Neurosciences, 28, 390–401.

    PubMed  CAS  Google Scholar 

  • Marcus, J., Honigbaum, S., Shroff, S., Honke, K., Rosenbluth, J., & Dupree, J. L. (2006). Sulfatide is essential for the maintenance of CNS myelin and axon structure. Glia, 53, 372–381.

    PubMed  CAS  Google Scholar 

  • Martin-Belmonte, F., Arvan, P., & Alonso, M. A. (2001). MAL mediates apical transport of secretory proteins in polarized epithelial Madin-Darby canine kidney cells. Journal of Biological Chemistry, 52, 49337–49342.

    Google Scholar 

  • Menon, K., Rasband, M. N., Taylor, C. M., Brophy, P., Bansal, R., & Pfeiffer, S. E. (2003). The myelin-axolemmal complex: biochemical dissection and the role of galactosphingolipids. Journal of Neurochemistry, 87, 995–1009.

    PubMed  CAS  Google Scholar 

  • Milner, R., Edwards, G., Streuli, C., & ffrench-Constant, C. (1996). A role in migration for the αvβ1 integrin expressed on oligodendrocyte precursors. Journal of Neuroscience, 16, 7240–7252.

    PubMed  CAS  Google Scholar 

  • Milner, R., & ffrench-Constant, C. (1994). A developmental analysis of oligodendroglial integrins in primary cells: changes in αv-associated β subunits during differentiation. Development, 120, 3497–3506.

    PubMed  CAS  Google Scholar 

  • Minuk, J., & Braun, P. E. (1996). Differential intracellular sorting of the myelin-associated glycopotein isoforms. Journal of Neuroscience Research, 44, 411–420.

    PubMed  CAS  Google Scholar 

  • Morell, P., & Jurevics, H. (1996). Origin of cholesterol in myelin. Neurochemical Research, 21, 463–470.

    PubMed  CAS  Google Scholar 

  • Müsch, A., Cohen, D., & Rodriguez-Boulan, E. (1997). Myosin II is involved in production of constitutive transport vesicles from the TGN. Journal of Cell Biology, 138, 291–306.

    PubMed  Google Scholar 

  • Nelson, W. J., & Yeaman, C. (2001). Protein trafficking in the exocytic pathway of polarized epithelial cells. Trends in Cell Biology, 11, 483–486.

    PubMed  CAS  Google Scholar 

  • Ohno, H., Tomemori, T., Nakatsu, F., et al. (1999). μ1B, a novel adaptor medium chain expressed in polarized epithelial cells. FEBS Letters, 449, 215–220.

    PubMed  CAS  Google Scholar 

  • Oztan, A., Silvis, M., Weisz, O. A., et al. (2007). Exocyst requirement for endocytic traffic directed toward the apical and basolateral poles of polarized MDCK cells. Molecular Biology of the Cell, 18, 3978–3992.

    PubMed  CAS  Google Scholar 

  • Pasquini, J. M., Guarna, M. M., Besio-Moreno, M. O., Iturregui, M. T., Oteiza, P. I., & Soto, E. F. (1989). Inhibition of the synthesis of glycosphingolipids affects the translocation of proteolipid protein to the myelin membrane. Journal of Neuroscience Research, 22, 289–296.

    PubMed  CAS  Google Scholar 

  • Patrikios, P., Stadelmann, C., Kutzelnigg, A., et al. (2006). Remyelination is extensive in a subset of multiple sclerosis patients. Brain, 129, 3165–3172.

    PubMed  Google Scholar 

  • Pedraza, L., Huang, J. K., & Colman, D. R. (2001). Organizing principles of the axoglial apparatus. Neuron, 30, 335–344.

    PubMed  CAS  Google Scholar 

  • Pfeiffer, S. E., Warrington, A. E., & Bansal, R. (1993). The oligodendrocyte and its many cellular processes. Trends in Cell Biology, 3, 191–197.

    PubMed  CAS  Google Scholar 

  • Pimplikar, S. W., & Simons, K. (1994). Activators of protein kinase A stimulate apical but not basolateral transport in epithelial Madin-Darby canine kidney cells. Histochemistry and Cell Biology, 269, 19054–19059.

    CAS  Google Scholar 

  • Rasband, M. N., Tayler, J., Yoshimi Kaga, Y., et al. (2005). CNP is required for maintenance of axon-glia interactions at nodes of Ranvier in the CNS. Glia, 50, 86–90.

    PubMed  Google Scholar 

  • Relvas, J. B., Setzu, A., Baron, W., et al. (2001). Expression of dominant-negative and chimeric subunits reveals an essential role for β1 integrin during myelination. Current Biology, 11, 1039–1043.

    PubMed  CAS  Google Scholar 

  • Richter-Landsberg, C. (2000). The oligodendroglia cytoskeleton in health and disease. Journal of Neuroscience Research, 59, 11–18.

    PubMed  CAS  Google Scholar 

  • Rindler, M. J., Ivanov, I. E., Plesken, H., & Sabatini, D. D. (1985). Polarized delivery of viral glycoproteins to the apical and basolateral plasma membranes of Madin-Darby canine kidney cells infected with temperature-sensitive viruses. Journal of Cell Biology, 100, 136–151.

    PubMed  CAS  Google Scholar 

  • Rodriguez-Boulan, E., Kreizer, G., & Müsch, A. (2005). Organization of vesicular trafficking in epithelia. Nature Reviews. Molecular Cell Biology, 6, 233–247.

    PubMed  CAS  Google Scholar 

  • Rodriguez-Gabin, A. G., Cammer, M., Almazan, G., Charron, M., & Larocca, J. N. (2001). Role of rRab22b, an oligodendrocyte protein, in regulation of transport from trans Golgi to endocytic compartments. Journal of Neuroscience Research, 66, 1149–1160.

    Google Scholar 

  • Rodriguez-Gabin, A. G., Almazan, G., & Larocca, J. N. (2004). Vesicle transport in oligodendrocytes: probable role of rab40c protein. Journal of Neuroscience Research, 76, 758–770.

    PubMed  CAS  Google Scholar 

  • Saher, G., Brügger, B., Lappe-Siefke, C., et al. (2005). High cholesterol level is essential for myelin membrane growth. Nature Neuroscience, 8, 468–475.

    PubMed  CAS  Google Scholar 

  • Salzer, J. L. (2003). Polarized domains of myelinated axons. Neuron, 40, 297–318.

    PubMed  CAS  Google Scholar 

  • Saravanan, K., Schaeren-Wiemers, N., Klein, D., et al. (2004). Specific downregulation and mistargeting of the lipid raft-associated protein MAL in a glycolipid storage disorder. Neurobiology of Disease, 16, 396–406.

    PubMed  CAS  Google Scholar 

  • Schachner, M., & Bartsch, U. (2000). Multiple functions of the myelin-associated glycoprotein MAG (siglec-4) in formation and maintenance of myelin. Glia, 29, 154–165.

    PubMed  CAS  Google Scholar 

  • Schaeren-Wiemers, N., Bonnet, A., Erb, M., et al. (2004). The raft-associated protein MAL is required for maintenance of proper axon-glia interactions in the central nervous system. Journal of Cell Biology, 166, 731–742.

    PubMed  CAS  Google Scholar 

  • Schaeren-Wiemers, N., Valenzuela, D. M., Frank, M., & Schwab, M. E. (1995). Characterization of a rat gene, rMAL, encoding a protein with four hydrophobic domains in central and peripheral myelin. Journal of Neuroscience, 15, 5753–5764.

    PubMed  CAS  Google Scholar 

  • Schafer, D. P., Bansal, R., Hedstrom, K. L., Pfeiffer, S. E., & Rasband, M. N. (2004). Does paranode formation and maintenance require partitioning of neurofascin 155 into lipid rafts? Journal of Neuroscience, 24, 3176–3185.

    PubMed  CAS  Google Scholar 

  • Schell, M. J., Maurice, M., Stieger, B., & Hubbard, A. L. (1992). 5′nucleotidase is sorted to the apical domain of hepatocytes via an indirect route. Journal of Cell Biology, 119, 1173–1182.

    PubMed  CAS  Google Scholar 

  • Schneider, A., Länder, H., Schulz, G., et al. (2005). Palmitoylation is a sorting determinant for transport to the myelin membrane. Journal of Cell Science, 118, 2415–2423.

    PubMed  CAS  Google Scholar 

  • Schneider, A., Montague, P., Griffiths, I., et al. (1992). Uncoupling of hypomyelination and glial cell death by a mutation in the proteolipid protein gene. Nature, 358, 758–761.

    PubMed  CAS  Google Scholar 

  • Schuck, S., & Simons, K. (2004). Polarized sorting in epithelial cells: raft clustering and the biogenesis of the apical membrane. Journal of Cell Science, 117, 5955–5964.

    PubMed  CAS  Google Scholar 

  • Shin, K., Fogg, V. C., & Margolis, B. (2006). Tight junctions and cell polarity. Annual Review of Cell and Developmental Biology, 22, 207–235.

    CAS  Google Scholar 

  • Simons, M., Krämer, E. M., Mach, P., et al. (2002). Overexpression of the myelin proteolipid protein leads to accumulation of cholesterol and proteolipid protein in endosomes/lysosomes: implications for Pelizaeus-Merzbacher disease. Journal of Cell Biology, 157, 327–336.

    PubMed  CAS  Google Scholar 

  • Simons, M., Krämer, E. M., Thiele, C., Stoffel, W., & Trotter, J. (2000). Assembly of myelin by association of proteolipid protein with cholesterol- and galactosylceramide-rich membrane domains. Journal of Cell Biology, 151, 143–154.

    PubMed  CAS  Google Scholar 

  • Simons, K., & van Meer, G. (1988). Lipid sorting in epithelial cells. Biochemistry, 27, 6197–6202.

    PubMed  CAS  Google Scholar 

  • Šišková, Z., Baron, W., de Vries, H., & Hoekstra, D. (2006). Fibronectin impedes “myelin” sheet-directed flow in oligodendrocytes: a role for beta 1 integrin-mediated PKC signaling pathway in vesicular trafficking. Molecular and Cellular Neurosciences, 33, 150–159.

    PubMed  Google Scholar 

  • Sobel, R. A. (1998). The extracellular matrix in multiple sclerosis lesions. Journal of Neuropathology and Experimental Neurology, 57, 205–217.

    PubMed  CAS  Google Scholar 

  • Sobel, R. A., & Mitchell, M. E. (1989). Fibronectin in multiple sclerosis lesions. American Journal of Pathology, 135, 161–168.

    PubMed  CAS  Google Scholar 

  • Song, J., Carson, J. H., Barbarese, E., Li, F.-Y., & Duncan, I. D. (2003). RNA transport in oligodendrocytes from the taiep mutant rat. Molecular and Cellular Neurosciences, 24, 926–938.

    PubMed  CAS  Google Scholar 

  • Stankoff, B., Aigrot, M. S., Noel, F., Wattilliaux, A., Zalc, B., & Lubetzki, C. (2002). Ciliary neurotrophic factor (CNTF) enhances myelin formation: a novel role for CNTF and CNTF-related molecules. Journal of Neuroscience, 22, 9221–9227.

    PubMed  CAS  Google Scholar 

  • Stevens, B., Porta, S., Haak, L. L., Gallo, V., & Fields, R. D. (2002). Adenosine: a neuron-glial transmitter promoting myelination in the CNS in response to action potentials. Neuron, 36, 855–868.

    PubMed  CAS  Google Scholar 

  • Stoffel, W., & Bosio, A. (1997). Myelin glycolipids and their function. Current Opinion in Neurobiology, 7, 654–661.

    PubMed  CAS  Google Scholar 

  • Taguchi, K., Yoshinaka, K., Yoshino, K., Yonizawa, K., & Maekawa, S. (2005). Biochemical and morphologic evidence of the interaction of oligodendrocyte membrane rafts with actin filaments. Journal of Neuroscience Research, 81, 218–225.

    PubMed  CAS  Google Scholar 

  • Tait, S., Gunn-Moore, F., Collinson, J. M., et al. (2000). An oligodendrocyte cell adhesion molecule at the site of assembly of the paranodal axo-glial junction. Journal of Cell Biology, 150, 657–666.

    PubMed  CAS  Google Scholar 

  • Taylor, C. M., Coetzee, T., & Pfeiffer, S. E. (2002). Detergent-insoluble glycosphingolipid/cholesterol microdomains of the myelin membrane. Journal of Neurochemistry, 81, 993–1004.

    PubMed  CAS  Google Scholar 

  • Thomas, M. G., Santa Coloma, T. A., Correale, J., & Boccacci, T. L. (2002). Myosin light chain kinase inhibitors induce retraction of mature oligodendrocyte processes. Neurochemical Research, 27, 1305–1312.

    PubMed  CAS  Google Scholar 

  • Trajkovic, K., Dhaunchak, A. S., Goncalves, J. T., et al. (2006). Neuron to glia signaling triggers myelin membrane exocytosis from endosomal storage sites. Journal of Cell Biology, 172, 937–948.

    PubMed  CAS  Google Scholar 

  • Trapp, B. D., Andrews, S. B., Cootauco, C., & Quarles, R. (1989). The myelin-associated glycoprotein is enriched in multivesicular bodies and periaxonal membranes of actively myelinating oligodendrocytes. Journal of Cell Biology, 109, 2417–2426.

    PubMed  CAS  Google Scholar 

  • van der Haar, M. E., Visser, H. W., de Vries, H., & Hoekstra, D. (1998). Transport of proteolipid protein to the plasma membrane does not depend on glycosphingolipid cotransport in oligodendrocyte cultures. Journal of Neuroscience Research, 51, 371–381.

    PubMed  Google Scholar 

  • van der Wouden, J. M., van IJzendoorn, S. C., & Hoekstra, D. (2002). Oncostatin M regulates membrane traffic and stimulates bile canalicular membrane biogenesis in HepG2 cells. EMBO Journal, 21, 6409–6418.

    PubMed  Google Scholar 

  • van Genderen, I., & van Meer, G. (1995). Differential targeting of glucosylceramide and galactosylceramide analogues after synthesis but not during transcytosis in Madin-Darby canine kidney cells. Journal of Cell Biology, 131, 645–654.

    PubMed  Google Scholar 

  • van IJzendoorn, S. C. D., & Hoekstra, D. (1998). (Glyco)sphingolipids are sorted in sub-apical compartments in HepG2 cells. A role for non-Golgi-related intracellular sites in the polarized distribution of (glyco)sphingolipids. Journal of Cell Biology, 142, 683–696.

    PubMed  Google Scholar 

  • Vinson, M., Rausch, O., Maycox, P. R., et al. (2003). Lipid rafts mediate the interaction between myelin-associated glycoprotein (MAG) on myelin and MAG-receptors on neurons. Molecular and Cellular Neurosciences, 22, 344–352.

    PubMed  CAS  Google Scholar 

  • Watanabe, R., Asakura, K., Rodriguez, M., & Pagano, R. E. (1999). Internalization and sorting of plasma membrane sphingolipid analogues in differentiating oligodendrocytes. Journal of Neurochemistry, 73, 1375–1383.

    PubMed  CAS  Google Scholar 

  • Wenger, D. A., Rafi, M. A., Luzi, P., Datto, J., & Costantino-Ceccarini, E. (2000). Krabbe disease: genetic aspects and progress toward therapy. Molecular Genetics and Metabolism, 70, 1–9.

    PubMed  CAS  Google Scholar 

  • Winckler, B., Forscher, P., & Mellman, I. (1999). A diffusion barrier maintains distribution of membrane proteins in polarized neurons. Nature, 397, 698–701.

    PubMed  CAS  Google Scholar 

  • Yamamoto, Y., Mizuno, R., Nishimura, T., et al. (1994). Cloning and expression of myelin-associated oligodendrocytic basic protein. A novel basic protein constituting the central nervous system myelin. Journal of Biological Chemistry, 269, 31725–31730.

    PubMed  CAS  Google Scholar 

  • Yamashita, T., Wu, Y. P., Sandhoff, R., et al. (2005). Interruption of ganglioside synthesis produces central nervous system degeneration and altered axon-glial interactions. Proceedings of the National Academy of Science of the United States of America, 102, 2725–2730.

    CAS  Google Scholar 

  • Yamamoto, Y., Yoshikawa, H., Nagano, S., et al. (1999). Myelin-associated oligodendrocytic basic protein is essential for normal arrangement of the radial component in central nervous system myelin. European Journal of Neuroscience, 11, 847–855.

    PubMed  CAS  Google Scholar 

  • Yang, L. J., Zeller, C. B., Shaper, N. L., et al. (1996). Gangliosides are neuronal ligands for myelin-associated glycoprotein. Proceedings of the National Academy of Sciences of the United States of America, 93, 814–818.

    PubMed  CAS  Google Scholar 

  • Zegers, M. M., & Hoekstra, D. (1997). Sphingolipid transport to the apical plasma membrane domain in human hepatoma cells is controlled by PKC and PKA activity: a correlation with cell polarity in HepG2 cells. Journal of Cell Biology, 138, 307–321.

    PubMed  CAS  Google Scholar 

  • Zhang, B., Cao, Q., Guo, A., et al. (2005). Juxtanodin: An oligodendroglial protein that promotes cellular arborization and 2’3’-cyclic nucleotide-3’-phosphodiesterase trafficking. Proceedings of the National Academy of Sciences of the United States of America, 102, 11527–11532.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgment

Wia Baron is supported by grant 03-533MS from the Dutch MS-Research Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olaf Maier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maier, O., Hoekstra, D. & Baron, W. Polarity Development in Oligodendrocytes: Sorting and Trafficking of Myelin Components. J Mol Neurosci 35, 35–53 (2008). https://doi.org/10.1007/s12031-007-9024-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-007-9024-8

Keywords

Navigation