Advertisement

Journal of Molecular Neuroscience

, Volume 35, Issue 1, pp 13–22 | Cite as

Post-Translational Modifications of Nucleosomal Histones in Oligodendrocyte Lineage Cells in Development and Disease

  • Siming Shen
  • Patrizia Casaccia-Bonnefil
Article

Abstract

The role of epigenetics in modulating gene expression in the development of organs and tissues and in disease states is becoming increasingly evident. Epigenetics refers to the several mechanisms modulating inheritable changes in gene expression that are independent of modifications of the primary DNA sequence and include post-translational modifications of nucleosomal histones, changes in DNA methylation, and the role of microRNA. This review focuses on the epigenetic regulation of gene expression in oligodendroglial lineage cells. The biological effects that post-translational modifications of critical residues in the N-terminal tails of nucleosomal histones have on oligodendroglial cells are reviewed, and the implications for disease and repair are critically discussed.

Keywords

Chromatin Development Epigenetics Brain Myelin Differentiation Glia 

Notes

Acknowledgment

Partially supported by grants from NIH-NINDS (RO1NS042925 and RO1 052738) and from the National Multiple Sclerosis Society (NMSS3957) to P.C.B. We thank Dr. Juan Sandoval for the help with the graphic illustrations.

References

  1. Aguirre, A. A., Chittajallu, R., Belachew, S., & Gallo, V. (2004). NG2-expressing cells in the subventricular zone are type C-like cells and contribute to interneuron generation in the postnatal hippocampus. Journal of Cell Biology, 165, 575–589.PubMedGoogle Scholar
  2. Anand, R., & Marmorstein, R. (2007). Structure and mechanism of lysine specific demethylase enzymes. Journal of Biological Chemistry (in press)Google Scholar
  3. Andres, M. E., Burger, C., Peral-Rubio, M. J., Battaglioli, E., Anderson, M. E., & Grimes, J. (1999). CoREST: A functional corepressor required for regulation of neural-specific gene expression. Proceedings of the National Academy of Sciences of the United States of America, 96, 9873–9878.PubMedGoogle Scholar
  4. Ashraf, S. I., & Ip, Y. T. (1998). Transcriptional control: Repression by local chromatin modification. Current Biology, 8, R683–686.PubMedGoogle Scholar
  5. Asklund, T., Appelskog, I. B., Ammerpohl, O., Ekstrom, T. J., & Almqvist, P. M. (2004). Histone deacetylase inhibitor 4-phenylbutyrate modulates glial fibrillary acidic protein and connexin 43 expression, and enhances gap-junction communication, in human glioblastoma cells. European Journal of Cancer, 40, 1073–1081.PubMedGoogle Scholar
  6. Ballas, N., Battaglioli, E., Atouf, F., Andres, M. E., Chenoweth, J., Anderson, M. E., et al. (2001). Regulation of neuronal traits by a novel transcriptional complex. Neuron, 31, 353–365.PubMedGoogle Scholar
  7. Bannister, A. J., & Kouzarides, T. (2005). Reversing histone methylation. Nature, 436, 1103–1106.PubMedGoogle Scholar
  8. Bannister, A. J., Schneider, R., & Kouzarides, T. (2002). Histone methylation: Dynamic or static? Cell, 109, 801–806.PubMedGoogle Scholar
  9. Bansal, R., & Pfeiffer, S. E. (1997). FGF-2 converts mature oligodendrocytes to a novel phenotype. Journal of Neuroscience Research, 50, 215–228.PubMedGoogle Scholar
  10. Bauer, U. M., Daujat, S., Nielsen, S. J., Nightingale, K., & Kouzarides, T. (2002). Methylation at arginine 17 of histone H3 is linked to gene activation. EMBO Reports, 3, 39–44.PubMedGoogle Scholar
  11. Bedford, M. T., & Richard, S. (2005). Arginine methylation an emerging regulator of protein function. Molecular Cell, 18, 263–272.PubMedGoogle Scholar
  12. Belachew, S., Chittajallu, R., Aguirre, A. A., Yuan, X., Kirby, M., Anderson, S., et al. (2003). Postnatal NG2 proteoglycan-expressing progenitor cells are intrinsically multipotent and generate functional neurons. Journal of Cell Biology, 161, 169–186.PubMedGoogle Scholar
  13. Berger, S. L. (2002). Histone modifications in transcriptional regulation. Current Opinion in G0enetics & Development, 12, 142–148.Google Scholar
  14. Bird, A. (2007). Perceptions of epigenetics. Nature, 447, 396–398.PubMedGoogle Scholar
  15. Bird, A. P., & Wolffe, A. P. (1999). Methylation-induced repression—belts, braces, and chromatin. Cell, 99, 451–454.PubMedGoogle Scholar
  16. Boisvert, F. M., Chenard, C. A., & Richard, S. (2005). Protein interfaces in signaling regulated by arginine methylation. Sci STKE, 2005(271), re2.PubMedGoogle Scholar
  17. Bonni, A., Sun, Y., Nadal-Vicens, M., Bhatt, A., Frank, D. A., Rozovsky, I., et al. (1997). Regulation of gliogenesis in the central nervous system by the JAK-STAT signaling pathway. Science, 278, 477–483.PubMedGoogle Scholar
  18. Camelo, S., Iglesias, A. H., Hwang, D., Due, B., Ryu, H., Smith, K., et al. (2005). Transcriptional therapy with the histone deacetylase inhibitor trichostatin A ameliorates experimental autoimmune encephalomyelitis. Journal of Neuroimmunology, 164, 10–21.PubMedGoogle Scholar
  19. Cao, X., Yeo, G., Muotri, A. R., Kuwabara, T., & Gage, F. H. (2006). Noncoding RNAs in the mammalian central nervous system. Annual Review of Neuroscience, 29, 77–103.PubMedGoogle Scholar
  20. Casaccia-Bonnefil, P., Hardy, R. J., Teng, K. K., Levine, J. M., Koff, A., & Chao, M. V. (1999). Loss of p27Kip1 function results in increased proliferative capacity of oligodendrocyte progenitors but unaltered timing of differentiation. Development, 126, 4027–4037.PubMedGoogle Scholar
  21. Casaccia-Bonnefil, P., Tikoo, R., Kiyokawa, H., Friedrich Jr., V., Chao, M. V., & Koff, A. (1997). Oligodendrocyte precursor differentiation is perturbed in the absence of the cyclin-dependent kinase inhibitor p27Kip1. Genes & Development, 11, 2335–2346.Google Scholar
  22. Chen, D., Ma, H., Hong, H., Koh, S. S., Huang, S. M., Schurter, B. T., et al. (1999). Regulation of transcription by a protein methyltransferase. Science, 284, 2174–2177.PubMedGoogle Scholar
  23. Cheng, L. C., Tavazoie, M., & Doetsch, F. (2005). Stem cells: From epigenetics to microRNAs. Neuron, 46, 363–367.PubMedGoogle Scholar
  24. Cheung, W. L., Briggs, S. D., & Allis, C. D. (2000). Acetylation and chromosomal functions. Current Opinion in Cell Biology, 12, 326–333.PubMedGoogle Scholar
  25. Cunliffe, V. T., & Casaccia-Bonnefil, P. (2006). Histone deacetylase 1 is essential for oligodendrocyte specification in the zebrafish CNS. Mechanisms of Development, 123, 24–30.PubMedGoogle Scholar
  26. Davie, J. K., & Dent, S. Y. (2002). Transcriptional control: an activating role for arginine methylation. Current Biology, 12, R59–R61.PubMedGoogle Scholar
  27. de Ruijter, A. J., van Gennip, A. H., Caron, H. N., Kemp, S., & van Kuilenburg, A. B. (2003). Histone deacetylases (HDACs): characterization of the classical HDAC family. Biochemical Journal, 370, 737–749.PubMedGoogle Scholar
  28. Denman, R. B. (2005). PAD: the smoking gun behind arginine methylation signaling? Bioessays, 27, 242–246.PubMedGoogle Scholar
  29. Dugas, J. C., Ibrahim, A., & Barres, B. A. (2007). A crucial role for p57(Kip2) in the intracellular timer that controls oligodendrocyte differentiation. Journal of Neuroscience, 27, 6185–6196.PubMedGoogle Scholar
  30. Durand, B., Fero, M. L., Roberts, J. M., & Raff, M. C. (1998). p27Kip1 alters the response of cells to mitogen and is part of a cell-intrinsic timer that arrests the cell cycle and initiates differentiation. Current Biology, 8, 431–440.PubMedGoogle Scholar
  31. Durand, B., & Raff, M. (2000). A cell-intrinsic timer that operates during oligodendrocyte development. Bioessays, 22, 64–71.PubMedGoogle Scholar
  32. Dutnall, R. N., & Ramakrishnan, V. (1997). Twists and turns of the nucleosome: tails without ends. Structure, 5, 1255–1259.PubMedGoogle Scholar
  33. Fancy, S. P., Zhao, C., & Franklin, R. J. (2004). Increased expression of Nkx2.2 and Olig2 identifies reactive oligodendrocyte progenitor cells responding to demyelination in the adult CNS. Molecular and Cellular Neurosciences, 27, 247–254.PubMedGoogle Scholar
  34. Feng, J., Chang, H., Li, E., & Fan, G. (2005). Dynamic expression of de novo DNA methyltransferases Dnmt3a and Dnmt3b in the central nervous system. Journal of neuroscience research, 79, 734–746.PubMedGoogle Scholar
  35. Feng, J., Fouse, S., & Fan, G. (2007). Epigenetic regulation of neural gene expression and neuronal function. Pediatric Research, 61, 58R–63R.PubMedGoogle Scholar
  36. Fukuda, S., & Taga, T. (2005). Cell fate determination regulated by a transcriptional signal network in the developing mouse brain. Anat Sci Int, 80, 12–18.PubMedGoogle Scholar
  37. Gard, A. L., & Pfeiffer, S. E. (1993). Glial cell mitogens bFGF and PDGF differentially regulate development of O4  GalC-oligodendrocyte progenitors. Developments in Biologicals, 159, 618–630.Google Scholar
  38. Ghiani, C. A., Eisen, A. M., Yuan, X., DePinho, R. A., McBain, C. J., & Gallo, V. (1999). Neurotransmitter receptor activation triggers p27(Kip1)and p21(CIP1) accumulation and G1 cell cycle arrest in oligodendrocyte progenitors. Development, 126, 1077–1090.PubMedGoogle Scholar
  39. Goll, M. G., & Bestor, T. H. (2002). Histone modification and replacement in chromatin activation. Genes & Development, 16, 1739–1742.Google Scholar
  40. Gottschling, D. E. (2006). DNA repair: corrections in the golden years. Current Biology, 16, R956–R958.PubMedGoogle Scholar
  41. Graham, V., Khudyakov, J., Ellis, P., & Pevny, L. (2003). SOX2 functions to maintain neural progenitor identity. Neuron, 39, 749–765.PubMedGoogle Scholar
  42. Grunstein, M. (1997). Histone acetylation in chromatin structure and transcription. Nature, 389, 349–352.PubMedGoogle Scholar
  43. Guillemot, F. (1995). Analysis of the role of basic-helix-loop-helix transcription factors in the development of neural lineages in the mouse. Biology of the Cell, 84, 3–6.PubMedGoogle Scholar
  44. Hao, Y., Creson, T., Zhang, L., Li, P., Du, F., Yuan, P., et al. (2004). Mood stabilizer valproate promotes ERK pathway-dependent cortical neuronal growth and neurogenesis. Journal of Neuroscience, 24, 6590–6599.PubMedGoogle Scholar
  45. He, Y., Dupree, J., Wang, J., Sandoval, J., Li, J., Liu, H., et al. (2007). The transcription factor Yin Yang 1 is essential for oligodendrocyte progenitor differentiation. Neuron, 55, 217–230.PubMedGoogle Scholar
  46. Horio, Y., Hisahara, S., & Sakamoto, J. (2003). Functional analysis of SIR2. Nippon Yakurigaku Zasshi, 122(Suppl), 30P–32P.PubMedGoogle Scholar
  47. Hsieh, J., Nakashima, K., Kuwabara, T., Mejia, E., & Gage, F. H. (2004). Histone deacetylase inhibition-mediated neuronal differentiation of multipotent adult neural progenitor cells. Proceedings of the National Academy of Sciences of the United States of America, 101, 16659–16664.PubMedGoogle Scholar
  48. Huang, Y., Myers, S. J., & Dingledine, R. (1999). Transcriptional repression by REST: Recruitment of Sin3A and histone deacetylase to neuronal genes. Nature Neuroscience, 2, 867–872.PubMedGoogle Scholar
  49. Imai, S., Armstrong, C. M., Kaeberlein, M., & Guarente, L. (2000). Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature, 403, 795–800.PubMedGoogle Scholar
  50. John, G. R., Shankar, S. L., Shafit-Zagardo, B., Massimi, A., Lee, S. C., Raine, C. S., et al. (2002). Multiple sclerosis: Re-expression of a developmental pathway that restricts oligodendrocyte maturation. Natural Medicines, 8, 1115–1121.Google Scholar
  51. Kageyama, R., Ohtsuka, T., Hatakeyama, J., & Ohsawa, R. (2005). Roles of bHLH genes in neural stem cell differentiation. Exp Cell Res, 306, 343–348.PubMedGoogle Scholar
  52. Klose, R. J., & Zhang, Y. (2007). Regulation of histone methylation by demethylimination and demethylation. Nature Reviews. Molecular Cell Biology, 8, 307–318.PubMedGoogle Scholar
  53. Kondo, T., & Raff, M. (2000a). Basic helix-loop-helix proteins and the timing of oligodendrocyte differentiation. Development, 127, 2989–2998.PubMedGoogle Scholar
  54. Kondo, T., & Raff, M. (2000b). The Id4 HLH protein and the timing of oligodendrocyte differentiation. EMBO Journal, 19, 1998–2007.PubMedGoogle Scholar
  55. Kondo, T., & Raff, M. (2000c). Oligodendrocyte precursor cells reprogrammed to become multipotential CNS stem cells. Science, 289, 1754–1757.PubMedGoogle Scholar
  56. Kondo, T., & Raff, M. (2004). Chromatin remodeling and histone modification in the conversion of oligodendrocyte precursors to neural stem cells. Genes & Development, 18, 2963–2972.Google Scholar
  57. Kouzarides, T. (2002). Histone methylation in transcriptional control. Current Opinion in Genetics & Development, 12, 198–209.Google Scholar
  58. Kozik, M. B. (1976). The electron-microscopic picture of postnatal development of oligodendroglia. Folia Histochemica et Cytochemica (Krakow), 14, 99–106.Google Scholar
  59. Kubicek, S., & Jenuwein, T. (2004). A crack in histone lysine methylation. Cell, 119, 903–906.PubMedGoogle Scholar
  60. Kuhlbrodt, K., Herbarth, B., Sock, E., Enderich, J., Hermans-Borgmeyer, I., & Wegner, M. (1998). Cooperative function of POU proteins and SOX proteins in glial cells. Journal of Biological Chemistry, 273, 16050–16057.PubMedGoogle Scholar
  61. Kuo, M. H., & Allis, C. D. (1998). Roles of histone acetyltransferases and deacetylases in gene regulation. Bioessays, 20, 615–626.PubMedGoogle Scholar
  62. Lachner, M., & Jenuwein, T. (2002). The many faces of histone lysine methylation. Current Opinion in Cell Biology, 14, 286–298.PubMedGoogle Scholar
  63. Larocque, D., Galarneau, A., Liu, H. N., Scott, M., Almazan, G., & Richard, S. (2005). Protection of p27(Kip1) mRNA by quaking RNA binding proteins promotes oligodendrocyte differentiation. Nature Neuroscience, 8, 27–33.PubMedGoogle Scholar
  64. Li, W., Zhang, B., Tang, J., Cao, Q., Wu, Y., Wu, C., et al. (2007). Sirtuin 2, a mammalian homolog of yeast silent information regulator-2 longevity regulator, is an oligodendroglial protein that decelerates cell differentiation through deacetylating alpha-tubulin. Nature Neuroscience, 27, 2606–2616.Google Scholar
  65. Liu, A., Han, Y. R., Li, J., Sun, D., Ouyang, M., Plummer, M. R., et al. (2007). The glial or neuronal fate choice of oligodendrocyte progenitors is modulated by their ability to acquire an epigenetic memory. Journal of Neuroscience, 27, 7339–7343.PubMedGoogle Scholar
  66. Liu, A., Li, J., Marin-Husstege, M., Kageyama, R., Fan, Y., Gelinas, C., et al. (2006). A molecular insight of Hes5-dependent inhibition of myelin gene expression: old partners and new players. EMBO Journal, 25, 4833–4842.PubMedGoogle Scholar
  67. Liu, A., Muggironi, M., Marin-Husstege, M., & Casaccia-Bonnefil, P. (2003). Oligodendrocyte process outgrowth in vitro is modulated by epigenetic regulation of cytoskeletal severing proteins. Glia, 44, 264–274.PubMedGoogle Scholar
  68. Liu, A., Stadelmann, C., Moscarello, M., Bruck, W., Sobel, A., Mastronardi, F. G., et al. (2005). Expression of stathmin, a developmentally controlled cytoskeleton-regulating molecule, in demyelinating disorders. Journal of Neuroscience, 25, 737–747.PubMedGoogle Scholar
  69. Lyssiotis, C. A., Walker, J., Wu, C., Kondo, T., Schultz, P. G., & Wu, X. (2007). Inhibition of histone deacetylase activity induces developmental plasticity in oligodendrocyte precursor cells. Proceedings of the National Academy of Sciences of the United States of America, 104, 14982–14987.PubMedGoogle Scholar
  70. Magnaghi-Jaulin, L., Ait-Si-Ali, S., & Harel-Bellan, A. (1999). Histone acetylation in signal transduction by growth regulatory signals. Seminars in Cell & Developmental Biology, 10, 197–203.Google Scholar
  71. Marin-Husstege, M., He, Y., Li, J., Kondo, T., Sablitzky, F., & Casaccia-Bonnefil, P. (2006). Multiple roles of Id4 in developmental myelination: Predicted outcomes and unexpected findings. Glia, 54, 285–296.PubMedGoogle Scholar
  72. Marin-Husstege, M., Muggironi, M., Liu, A., & Casaccia-Bonnefil, P. (2002). Histone deacetylase activity is necessary for oligodendrocyte lineage progression. Journal of neuroscience, 22, 10333–10345.PubMedGoogle Scholar
  73. Mastronardi, F. G., daCruz, L. A., Wang, H., Boggs, J., & Moscarello, M. A. (2003). The amount of sonic hedgehog in multiple sclerosis white matter is decreased and cleavage to the signaling peptide is deficient. Multiple Sclerosis, 9, 362–371.PubMedGoogle Scholar
  74. Mastronardi, F. G., Wood, D. D., Mei, J., Raijmakers, R., Tseveleki, V., Dosch, H. M., et al. (2006). Increased citrullination of histone H3 in multiple sclerosis brain and animal models of demyelination: A role for tumor necrosis factor-induced peptidylarginine deiminase 4 translocation. Journal of Neuroscience, 26, 11387–11396.PubMedGoogle Scholar
  75. Mehler, M. F., & Mattick, J. S. (2006). Non-coding RNAs in the nervous system. Journal of Physiology, 575, 333–341.PubMedGoogle Scholar
  76. Mehler, M. F., & Mattick, J. S. (2007). Noncoding RNAs and RNA editing in brain development, functional diversification, and neurological disease. Physiological Reviews, 87, 799–823.PubMedGoogle Scholar
  77. Miskimins, R., Srinivasan, R., Marin-Husstege, M., Miskimins, W. K., & Casaccia-Bonnefil, P. (2002). p27(Kip1) enhances myelin basic protein gene promoter activity. Journal of Neuroscience Research, 67, 100–105.PubMedGoogle Scholar
  78. Nakashima, K., Yanagisawa, M., Arakawa, H., Kimura, N., Hisatsune, T., Kawabata, M., et al. (1999). Synergistic signaling in fetal brain by STAT3-Smad1 complex bridged by p300. Science, 284, 479–482.PubMedGoogle Scholar
  79. Naruse, Y., Aoki, T., Kojima, T., & Mori, N. (1999). Neural restrictive silencer factor recruits mSin3 and histone deacetylase complex to repress neuron-specific target genes. Proceedings of the National Academy of Sciences of the United States of America, 96, 13691–13696.PubMedGoogle Scholar
  80. Natarajan, C., & Bright, J. J. (2002). Curcumin inhibits experimental allergic encephalomyelitis by blocking IL-12 signaling through Janus kinase-STAT pathway in T lymphocytes. Journal of Immunology, 168, 6506–6513.Google Scholar
  81. Nishiyama, A. (2007). Polydendrocytes: NG2 cells with many roles in development and repair of the CNS. Neuroscientist, 13, 62–76.PubMedGoogle Scholar
  82. Noble, M., & Murray, K. (1984). Purified astrocytes promote the in vitro division of a bipotential glial progenitor cell. EMBO Journal, 3, 2243–2247.PubMedGoogle Scholar
  83. Pahlich, S., Zakaryan, R. P., & Gehring, H. (2006). Protein arginine methylation: Cellular functions and methods of analysis. Biochimica et Biophysica Bcta, 1764, 1890–1903.Google Scholar
  84. Pal, S., Vishwanath, S. N., Erdjument-Bromage, H., Tempst, P., & Sif, S. (2004). Human SWI/SNF-associated PRMT5 methylates histone H3 arginine 8 and negatively regulates expression of ST7 and NM23 tumor suppressor genes. Molecular and Cellular Biology, 24, 9630–9645.PubMedGoogle Scholar
  85. Rice, J. C., & Allis, C. D. (2001). Histone methylation versus histone acetylation: New insights into epigenetic regulation. Current Opinion in Cell Biology, 13, 263–273.PubMedGoogle Scholar
  86. Richards, E. J. (2002). Chromatin methylation: Who’s on first? Current Biology, 12, R694–695.PubMedGoogle Scholar
  87. Romm, E., Nielsen, J. A., Kim, J. G., & Hudson, L. D. (2005). Myt1 family recruits histone deacetylase to regulate neural transcription. Journal of Neurochemistry, 93, 1444–1453.PubMedGoogle Scholar
  88. Roopra, A., Sharling, L., Wood, I. C., Briggs, T., Bachfischer, U., Paquette, A. J., et al. (2000). Transcriptional repression by neuron-restrictive silencer factor is mediated via the Sin3-histone deacetylase complex. Molecular and Cellular Biology, 20, 2147–2157.PubMedGoogle Scholar
  89. Sakamoto, M., Hirata, H., Ohtsuka, T., Bessho, Y., & Kageyama, R. (2003). The basic helix-loop-helix genes Hesr1/Hey1 and Hesr2/Hey2 regulate maintenance of neural precursor cells in the brain. Journal of Biological Chemistry, 278, 44808–44815.PubMedGoogle Scholar
  90. Samanta, J., & Kessler, J. A. (2004). Interactions between ID and OLIG proteins mediate the inhibitory effects of BMP4 on oligodendroglial differentiation. Development, 131, 4131–4142.PubMedGoogle Scholar
  91. Shen, S., Li, J., & Casaccia-Bonnefil, P. (2005). Histone modifications affect timing of oligodendrocyte progenitor differentiation in the developing rat brain. Journal of Cell Biology, 169, 577–589.PubMedGoogle Scholar
  92. Shen, S., Liu, A., Li, J., Wolubah, C., & Casaccia-Bonnefil, P. (2007). Epigenetic memory loss in aging oligodendrocytes in the corpus callosum. Neurobiology of Aging (in press)Google Scholar
  93. Sohn, J., Natale, J., Chew, L. J., Belachew, S., Cheng, Y., Aguirre, A., et al. (2006). Identification of Sox17 as a transcription factor that regulates oligodendrocyte development. Journal of Neuroscience, 26, 9722–9735.PubMedGoogle Scholar
  94. Song, M. R., & Ghosh, A. (2004). FGF2-induced chromatin remodeling regulates CNTF-mediated gene expression and astrocyte differentiation. Nature Neuroscience, 7, 229–235.PubMedGoogle Scholar
  95. Southwood, C. M., Peppi, M., Dryden, S., Tainsky, M. A., & Gow, A. (2007). Microtubule deacetylases, SirT2 and HDAC6, in the nervous system. Neurochemical Research, 32, 187–195.PubMedGoogle Scholar
  96. Spencer, V. A., & Davie, J. R. (1999). Role of covalent modifications of histones in regulating gene expression. Gene, 240, 1–12.PubMedGoogle Scholar
  97. Spencer, V. A., & Davie, J. R. (2000). Signal transduction pathways and chromatin structure in cancer cells. Journal of Cellular Biochemistry. Supplement, 35, 27–35.PubMedCrossRefGoogle Scholar
  98. Stavropoulos, P., & Hoelz, A. (2007). Lysine-specific demethylase 1 as a potential therapeutic target. Expert Opinion on Therapeutic Targets, 11, 809–820.PubMedGoogle Scholar
  99. Stidworthy, M. F., Genoud, S., Li, W. W., Leone, D. P., Mantei, N., Suter, U., et al. (2004). Notch1 and Jagged1 are expressed after CNS demyelination, but are not a major rate-determining factor during remyelination. Brain, 127, 1928–1941.PubMedGoogle Scholar
  100. Strahl, B. D., Briggs, S. D., Brame, C. J., Caldwell, J. A., Koh, S. S., Ma, H., et al. (2001). Methylation of histone H4 at arginine 3 occurs in vivo and is mediated by the nuclear receptor coactivator PRMT1. Current Biology, 11, 996–1000.PubMedGoogle Scholar
  101. Struhl, K. (1998). Histone acetylation and transcriptional regulatory mechanisms. Genes & Development, 12, 599–606.Google Scholar
  102. Takeuchi, T., Watanabe, Y., Takano-Shimizu, T., & Kondo, S. (2006). Roles of jumonji and jumonji family genes in chromatin regulation and development. Developmental Dynamics, 235, 2449–2459.PubMedGoogle Scholar
  103. Takizawa, T., Nakashima, K., Namihira, M., Ochiai, W., Uemura, A., Yanagisawa, M., et al. (2001). DNA methylation is a critical cell-intrinsic determinant of astrocyte differentiation in the fetal brain. Developmental Cell, 1, 749–758.PubMedGoogle Scholar
  104. Tang, X. M., Beesley, J. S., Grinspan, J. B., Seth, P., Kamholz, J., & Cambi, F. (1999). Cell cycle arrest induced by ectopic expression of p27 is not sufficient to promote oligodendrocyte differentiation. Journal of Cellular Biochemistry, 76, 270–279.PubMedGoogle Scholar
  105. Tanny, J. C., Dowd, G. J., Huang, J., Hilz, H., & Moazed, D. (1999). An enzymatic activity in the yeast Sir2 protein that is essential for gene silencing. Cell, 99, 735–745.PubMedGoogle Scholar
  106. Taylor, C. M., Marta, C. B., Claycomb, R. J., Han, D. K., Rasband, M. N., Coetzee, T., & Pfeiffer, S. E. (2004). Proteomic mapping provides powerful insights into functional myelin biology. Proceedings of the National Academy of Sciences of the United States of America, 101, 4643–4648.PubMedGoogle Scholar
  107. Temple, S., & Raff, M. C. (1985). Differentiation of a bipotential glial progenitor cell in a single cell microculture. Nature, 313, 223–225.PubMedGoogle Scholar
  108. Teter, B., Osterburg, H. H., Anderson, C. P., & Finch, C. E. (1994). Methylation of the rat glial fibrillary acidic protein gene shows tissue-specific domains. Journal of Neuroscience Research, 39, 680–693.PubMedGoogle Scholar
  109. Thompson, P. R., & Fast, W. (2006). Histone citrullination by protein arginine deiminase: Is arginine methylation a green light or a roadblock? ACS Chem Biol, 1, 433–441.PubMedGoogle Scholar
  110. Thomson, S., Clayton, A. L., Hazzalin, C. A., Rose, S., Barratt, M. J., & Mahadevan, L. C. (1999). The nucleosomal response associated with immediate-early gene induction is mediated via alternative MAP kinase cascades: MSK1 as a potential histone H3/HMG-14 kinase. EMBO Journal, 18, 4779–4793.PubMedGoogle Scholar
  111. Tikoo, R., Osterhout, D. J., Casaccia-Bonnefil, P., Seth, P., Koff, A., & Chao, M. V. (1998). Ectopic expression of p27Kip1 in oligodendrocyte progenitor cells results in cell-cycle growth arrest. Journal of Neurobiology, 36, 431–440.PubMedGoogle Scholar
  112. Tokumoto, Y. M., Apperly, J. A., Gao, F. B., & Raff, M. C. (2002). Posttranscriptional regulation of p18 and p27 Cdk inhibitor proteins and the timing of oligodendrocyte differentiation. Developments in Biologicals, 245, 224–234.CrossRefGoogle Scholar
  113. Turner, B. M. (2000). Histone acetylation and an epigenetic code. Bioessays, 22, 836–845.PubMedGoogle Scholar
  114. Tyler, J. K., & Kadonaga, J. T. (1999). The “dark side” of chromatin remodeling: Repressive effects on transcription. Cell, 99, 443–446.PubMedGoogle Scholar
  115. Vanrobaeys, F., Van Coster, R., Dhondt, G., Devreese, B., & Van Beeumen, J. (2005). Profiling of myelin proteins by 2D-gel electrophoresis and multidimensional liquid chromatography coupled to MALDI TOF-TOF mass spectrometry. J Proteome Res, 4, 2283–2293.PubMedGoogle Scholar
  116. Vidali, G., Ferrari, N., & Pfeffer, U. (1988). Histone acetylation: A step in gene activation. Advances in Experimental Medicine and Biology, 231, 583–596.PubMedGoogle Scholar
  117. Wang, H., Huang, Z. Q., Xia, L., Feng, Q., Erdjument-Bromage, H., Strahl, B. D., et al. (2001a). Methylation of histone H4 at arginine 3 facilitating transcriptional activation by nuclear hormone receptor. Science, 293, 853–857.PubMedGoogle Scholar
  118. Wang, S., Sdrulla, A., Johnson, J. E., Yokota, Y., & Barres, B. A. (2001b). A role for the helix-loop-helix protein Id2 in the control of oligodendrocyte development. Neuron, 29, 603–614.PubMedGoogle Scholar
  119. Wang, Y., Wysocka, J., Sayegh, J., Lee, Y. H., Perlin, J. R., Leonelli, L., et al. (2004). Human PAD4 regulates histone arginine methylation levels via demethylimination. Science, 306, 279–283.PubMedGoogle Scholar
  120. Wei, Q., Miskimins, W. K., & Miskimins, R. (2005). Stage-specific expression of myelin basic protein in oligodendrocytes involves Nkx2.2-mediated repression that is relieved by the Sp1 transcription factor. Advances in Experimental Medicine and Biology, 280, 16284–16294.Google Scholar
  121. Werner, H. B., Kuhlmann, K., Shen, S., Uecker, M., Schardt, A., Dimova, K., et al. (2007). Proteolipid protein is required for transport of sirtuin 2 into CNS myelin. Journal of Neuroscience, 27, 7717–7730.PubMedGoogle Scholar
  122. Wilson, J. R. (2007). Targeting the JMJD2A histone lysine demethylase. Nature Structural and Molecular Biology, 14, 682–684.PubMedGoogle Scholar
  123. Wolffe, A. P. (1996). Histone deacetylase: a regulator of transcription. Science, 272, 371–372.PubMedGoogle Scholar
  124. Wysocka, J., Allis, C. D., & Coonrod, S. (2006). Histone arginine methylation and its dynamic regulation. Frontiers in Bioscience, 11, 344–355.PubMedGoogle Scholar
  125. Wysocka, J., Milne, T. A., & Allis, C. D. (2005). Taking LSD 1 to a new high. Cell, 122, 654–658.PubMedGoogle Scholar
  126. Zhang, Y., & Reinberg, D. (2001). Transcription regulation by histone methylation: Interplay between different covalent modifications of the core histone tails. Genes & Development, 15, 2343–2360.Google Scholar

Copyright information

© Humana Press Inc. 2007

Authors and Affiliations

  1. 1.Department Neuroscience and Cell BiologyRobert Wood Johnson Medical SchoolPiscatawayUSA

Personalised recommendations