Skip to main content
Log in

Unexpected Amplification of Leptin-Induced Stat3 Signaling by Urocortin: Implications for Obesity

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Cooperativity among ingestive peptides reflects attempts by the body to finely control its weight. Urocortin, like leptin, is a potent suppressor of food intake, and they interact at the blood–brain barrier (BBB). After injection into the hypothalamus, urocortin can stimulate the release of leptin in the periphery. It is not known, however, whether urocortin, known to signal through adenylate cyclase and elevate cAMP, can potentiate signal transducer and activator of transcription (Stat) 1 and 3 signaling known to mediate the actions of leptin. We examined the interactions between urocortin and leptin signaling in two cellular systems: HEK293 cells and cerebral microvessel endothelial RBE4 cells, a model of the BBB. Both cell lines have low basal levels of CRHR1 and CRHR2 (receptors for urocortin) and ObRs (receptors for leptin). The cells were cotransfected with the receptors and luciferase reporters to determine the level of Stat1 or Stat3 activation 6 h after treatment with leptin, urocortin, or both. Urocortin induced significant Stat3 but not Stat1 activation, mediated by either CRHR1 or CRHR2. Leptin signaling by ObRb caused a large increase of both Stat1 and Stat3, and this was significantly potentiated by the addition of urocortin, being more robust for Stat3 than Stat1. The interactions of leptin and urocortin were not reciprocal, as leptin failed to further increase urocortin-mediated cAMP production. By unexpectedly potentiating leptin signaling through Stat, urocortin amplifies the cellular response of leptin. This novel phenomenon suggests that urocortin can play an important compensatory role during leptin resistance in obesity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Asakawa, A., Inui, A., Ueno, N., Makino, S., Fujino, M. A., & Kasuga, M. (1999). Urocortin reduces food intake and gastric emptying in lean and ob/ob obese mice. Gastroenterology, 116, 1287–1292.

    Article  PubMed  CAS  Google Scholar 

  • Banks, W. A., Altmann, J., Sapolsky, R. M., Phllips-Conroy, J. E., & Morley, J. E. (2003). Serum leptin levels as a marker for a syndrome X-like condition in wild baboons. Journal of Clinical Endocrinology and Metabolism, 88, 1234–1240.

    Article  PubMed  CAS  Google Scholar 

  • Banks, W. A. & Farrell, C. L. (2003). Impaired transport of leptin across the blood–brain barrier in obesity is acquired and reversible. American Journal of Physiology, 285, E10–E15.

    PubMed  CAS  Google Scholar 

  • Banks, W. A., Kastin, A. J., Huang, W., Jaspan, J. B., & Maness, L. M. (1996). Leptin enters the brain by a saturable system independent of insulin. Peptides, 17, 305–311.

    Article  PubMed  CAS  Google Scholar 

  • Banks, W. A., Niehoff, M. L., Martin, D., & Farrell, C. L. (2002). Leptin transport across the blood–brain barrier of the Koletsky rat is not mediated by a product of the leptin receptor gene. Brain Research, 950, 130–136.

    Article  PubMed  CAS  Google Scholar 

  • Bjørbæk, C., Elmquist, J. K., Michl, P., Ahima, R. S., van Bueren, A., McCall, A. L., et al. (1998). Expression of leptin receptor isoforms in rat brain microvessels. Endocrinology, 139, 3485–3491.

    Article  PubMed  Google Scholar 

  • Bjørbæk, C, & Kahn, B. B. (2004). Leptin signaling in the central nervous system and the periphery. Recent Progress in Hormone Research, 59, 305–331.

    Article  PubMed  Google Scholar 

  • Chiulli, A. C., Trompeter, K., & Palmer, M. (2000). A novel high throughput chemiluminescent assay for the measurement of cellular cyclic adenosine monophosphate levels. Journal of Biomolecular Screening, 5, 239–247.

    Article  PubMed  CAS  Google Scholar 

  • Deo, D. D., Bazan, N. G., & Hunt, J. D. (2004). Activation of platelet-activating factor receptor-coupled G alpha q leads to stimulation of Src and focal adhesion kinase via two separate pathways in human umbilical vein endothelial cells. Journal of Biological Chemistry, 279, 3497–3508.

    Article  PubMed  CAS  Google Scholar 

  • Dhillon, H., Zigman, J. M., Ye, C. P., Lee, C. E., McGovern, R. A., Tang, V. S., et al. (2006). Leptin directly activates SF1 neurons in the VMH, and this action by leptin is required for normal body-weight homeostasis. Neuron, 49, 191–203.

    Article  PubMed  CAS  Google Scholar 

  • Friedman, J. M. (2000). Obesity in the new millennium. Nature, 404, 632–634.

    PubMed  CAS  Google Scholar 

  • George, SR, Fan, T, Xie, Z, Tse, R, Tam, V, Varghese, G, et al. (2000). Oligomerization of mu- and delta-opioid receptors. Generation of novel functional properties. Journal of Biological Chemistry, 275, 26128–26135.

    Article  PubMed  CAS  Google Scholar 

  • Huang, Q., Timofeeva, E., & Richard, D. (2006). Regulation of corticotropin-releasing factor and its types 1 and 2 receptors by leptin in rats subjected to treadmill running-induced stress. Journal of Endocrinology, 191, 179–188.

    Article  PubMed  CAS  Google Scholar 

  • Hunyady, L., & Catt, K. J. (2006). Pleiotropic AT1 receptor signaling pathways mediating physiological and pathogenic actions of angiotensin II. Molecular Endocrinology, 20, 953–970.

    Article  PubMed  CAS  Google Scholar 

  • Kastin, A. J., & Akerstrom, V. (2000) Mahogany (1377–1428) enters brain by a saturable transport system. Journal of Pharmacology and Experimental Therapeutics, 294, 633–636.

    PubMed  CAS  Google Scholar 

  • Kastin, A. J., & Akerstrom, V. (2003). Entry of exendin-4 into brain is rapid but may be limited at high doses. International Journal of Obesity, 27, 313–318.

    Article  PubMed  CAS  Google Scholar 

  • Kastin, A. J., Akerstrom, V., & Pan, W. (2000). Activation of urocortin transport into brain by leptin. Peptides, 21, 1811–1817.

    Article  PubMed  CAS  Google Scholar 

  • Kastin, A. J., & Pan, W. (2003). Feeding peptides interact in several ways with the blood–brain barrier. Current Pharmaceutical Design, 9, 789–794.

    Article  PubMed  CAS  Google Scholar 

  • Kastin, A. J., Pan, W. H., Akerstrom, V., Hackler, L., Wang, C. F., & Kotz, C. M. (2002). Novel peptide–peptide cooperation may transform feeding behavior. Peptides, 23, 2189–2196.

    Article  PubMed  CAS  Google Scholar 

  • Kastin, A. J., Pan, W., Maness, L. M., Koletsky, R. J., & Ernsberger, P. (1999) Decreased transport of leptin across the blood–brain barrier in rats lacking the short form of the leptin receptor. Peptides, 20, 1449–1453.

    Article  PubMed  CAS  Google Scholar 

  • Kotz, C. M., Wang, C., Levine, A. S., & Billington, C. J. (2002). Urocortin in the hypothalamic PVN increases leptin and affects upcoupling proteins-1 and -3 in rats. American Journal of Physiology, 282, R546–R551.

    PubMed  CAS  Google Scholar 

  • Koutmani, Y., & Karalis, K. P. (2006). Cross talk between leptin and corticotropin releasing hormone signaling in a neuroblastoma cell line. FENS Forum Abstracts, A017.4 Poster board 360

  • Lee, S. P., So, C. H., Rashid, A. J., Varghese, G., Cheng, R., Lança, A. J., et al. (2004). Dopamine D1 and D2 receptor co-activation generates a novel phospholipase C-mediated calcium signal. Journal of Biological Chemistry, 279, 35671–35678.

    Article  PubMed  CAS  Google Scholar 

  • Mehta, P. K., & Griendling, K. K. (2007). Angiotensin II cell signaling: physiological and pathological effects in the cardiovascular system. American Journal of Physiology. Cell physiology, 292, C82–C97.

    Article  PubMed  CAS  Google Scholar 

  • Mellado, M., Rodríguez-Frade, J. M., Vila-Coro, A. J., Fernández, S., Martín de Ana, A., Jones, D. R., et al. (2001). Chemokine receptor homo- or heterodimerization activates distinct signaling pathways. EMBO Journal, 20, 2497–2507.

    Article  PubMed  CAS  Google Scholar 

  • Nishiyama, M., Makino, S., Asaba, K., & Hashimoto, K. (1999). Leptin effects on the expression of type-2 CRH receptor mRNA in the ventromedial hypothalamus in the rat. Journal of Neuroendocrinology, 11, 307–314.

    Article  PubMed  CAS  Google Scholar 

  • Pan, W., Akerstrom, V., Zhang, J., Pejovic, V., & Kastin, A. J. (2004). Modulation of feeding-related peptide/protein signals by the blood–brain barrier. Journal of Neurochemistry, 90, 455–461.

    Article  PubMed  CAS  Google Scholar 

  • Pan, W., & Kastin, A. J. (2003). Interactions of cytokines with the blood–brain barrier: Implications for feeding. Current Pharmaceutical Design, 9, 827–831.

    Article  PubMed  CAS  Google Scholar 

  • Pan, W., & Kastin, A. J. (2007). Mahogany, blood–brain barrier, and fat mass surge in AVY mice. International Journal of Obesity, 31, 1030–1032.

    Article  PubMed  CAS  Google Scholar 

  • Pepe, S., van den Brink, O. W., Lakatta, E. G., & Xiao, R. P. (2004). Cross-talk of opioid peptide receptor and beta-adrenergic receptor signalling in the heart. Cardiovascular Research, 63, 414–422.

    Article  PubMed  CAS  Google Scholar 

  • Pepe, S, Xiao, R. P., Hohl, C, Altschuld, R, & Lakatta, E. G. (1997) ‘Cross talk’ between opioid peptide and adrenergic receptor signaling in isolated rat heart. Circulation, 95, 2122–2129.

    PubMed  CAS  Google Scholar 

  • Pollock, A. (2004). Coactivation of D1 and D2 dopamine receptors: In marriage, a case of his, hers, and theirs. Science’s STKE [Electronic Resource]: Signal Transduction Knowledge Environment, 2004, pe50–pe50.

  • Rosenblum, C. I., Tota, M., Cully, D., Smith, T., Collum, R., Qureshi, S., et al. (1996). Functional STAT 1 and 3 signaling by the leptin receptor (OB-R); Reduced expression of the rat fatty leptin receptor in transfected cells. Endocrinology, 137, 5178–5181.

    Article  PubMed  CAS  Google Scholar 

  • Tu, H., Kastin, A. J., Bjorbaek, C., & Pan, W. (2007a). Urocortin trafficking in cerebral microvessel endothelial cells. Journal of Molecular Neuroscience, 31, 171–182.

    PubMed  CAS  Google Scholar 

  • Tu, H., Kastin, A. J., & Pan, W. (2007b). CRH-R1 and CRH-R2 are both trafficking and signaling receptors for urocortin. Molecular Endocrinology, 21, 700–711.

    Article  PubMed  CAS  Google Scholar 

  • Yu, C., Kastin, A. J., & Pan, W. (2007a). TNF reduces LIF endocytosis despite increasing NFkappaB-mediated gp130 expression. Journal of Cellular Physiology 213(1), 161–166

    Article  PubMed  CAS  Google Scholar 

  • Yu, C., Kastin, A. J., Tu, H., & Pan, W. (2007b). Opposing effects of proteasomes and lysosomes on LIFR: Modulation by TNF. Journal of Molecular Neuroscience, in press

Download references

Acknowledgements

This study was supported by the NIH (DK54880 to AJK, NS45751 and NS46528 to WP). RBE4 cells were obtained from Dr. Pierre-Olivier Couraud (Institut Cochin, Paris, France). ObRa and ObRb plasmids were kindly provided by Dr. Christian Bjorbaek (Harvard Medical School, Boston, MA). Stat3 luciferase reporter was kindly provided by Dr. Charles Rosenblum (Merck Research Laboratories, Rahway, NJ).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weihong Pan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pan, W., Tu, H., Hsuchou, H. et al. Unexpected Amplification of Leptin-Induced Stat3 Signaling by Urocortin: Implications for Obesity. J Mol Neurosci 33, 232–238 (2007). https://doi.org/10.1007/s12031-007-0071-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-007-0071-y

Keywords

Navigation