Skip to main content
Log in

Evidence of Postnatal Neurogenesis in Dorsal Root Ganglion: Role of Nitric Oxide and Neuronal Restrictive Silencer Transcription Factor

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

The various mechanisms underlying postnatal neurogenesis from discrete CNS regions have emerged recently. However, little is known about postnatal neurogenesis in dorsal root ganglion (DRG). BrdU incorporation and subsequent immunostaining for BrdU, neural stem cell marker, nestin and neuronal marker, PGP 9.5 have provided evidence for postnatal neurogenesis in DRG. We further demonstrate, in vivo and in vitro, that nitric oxide (NO) regulates neural stem cells (nestin+) proliferation and, possibly, differentiation into neurons. Surprisingly, nerve growth factor (NGF) had no effect on nestin+ cells proliferation. Axotomy or NGF-deprivation of DRG neurons-satellite glia co-culture increases NO production by neurons and treating with a NO synthase (NOS) inhibitor, N G-nitro-L-arginine methylester (L-NAME) in vitro or 7-nitroindazole (7NI) in vivo, causes a significant increase in nestin+ cell numbers. However, a soluble guanylyl cyclase (sGC) blocker, 1H-[1, 2, 4] oxadiazolo [4, 3-a] quinoxalin-1-one (ODQ) treatment of NGF-deprived DRG neurons-satellite glia co-culture had no significant effect on nestin+ cell numbers. This implies NO regulates nestin+ cell proliferation independent of cGMP. We hypothesised that the neuronal-restrictive silencer transcription factor (NRSF, also termed REST), a master regulator of neuronal genes in non-neuronal cells, may be modulated by NO in satellite glia cultures. A NO donor, dimethyl-triamino-benzidine (DETA)-NO treatment of satellite glia cell cultures results in a significant increase in the NRSF/REST mRNA expression. The majority of cultured satellite glia cells express nestin, and also show increased levels of NOS, thus L-NAME treatment of these cultures causes a dramatic reduction in NRSF/REST mRNA. Overall these results suggest that NO inhibits neurogenesis in DRG and this is correlated with modulation of NRSF, a known modulator of differentiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

BrdU:

5-bromo-2′-deoxyuridine

BMP:

bone morphogenic protein

BSA:

bovine serum albumin

CNS:

central nervous system

cGMP:

cyclic guanosine monophosphate

DETA-NO:

dimethyl-triamino-benzidine

DMEM:

Dulbecco's modified Eagle's medium

DMSO:

dimethyl sulfoxide

DRG:

dorsal root ganglion

FCS:

foetal calf serum

FGF:

fibroblast growth factor

HBSS:

Hank's balanced salt solution

iNOS:

inducible nitric oxide synthase

L-NAME:

NG-nitro-L-arginine methyl ester

NBM:

Neurobasal medium

NGF:

nerve growth factor

7NI:

7 Nitroindazole

NO:

nitric oxide

NOS:

nitric oxide synthase

nNOS:

neuronal nitric oxide synthase

NRSF:

neuronal-restrictive silencer transcription factor

NMDA:

N-methyl-D-aspartate

NMDAR:

NMDA receptor

ODQ:

1H-[1, 2, 4] oxadiazolo [4, 3-a] quinoxalin-1-one

PBS:

phosphate buffer saline

PFA:

paraformaldehyde

PGP 9.5:

protein gene product 9.5

PNS:

peripheral nervous system

RE-1:

repressor element-1

REST:

RE 1 silencer transcription factor

RT:

room temperature

sGC:

soluble guanylyl cyclase

trkA:

tyrosine kinase A

T4 :

thyroxine

T3 :

tri-iodothyronine

References

  • Alvarez-Buylla, A., Garcia-Verdugo, J. M., & Tramontin, A. D. (2001). A unified hypothesis on the lineage of neural stem cells. Nature Reviews. Neuroscience, 2(4), 287–293.

    Article  PubMed  CAS  Google Scholar 

  • Cardenas, A., Moro, M. A., Hurtado, O., Leza, J. C., & Lizasoain, I. (2005). Dual role of nitric oxide in adult neurogenesis. Brain Research Reviews, 50, 1–6.

    Article  PubMed  CAS  Google Scholar 

  • Chong, J. A., Tapia-Ramirez, J., Kim, S., Toledo-Aral, J. J., Zheng, Y., Boutros, M. C., et al. (1995). REST: A mammalian silencer protein that restricts sodium channel gene expression to neurons. Cell, 80, 949–957.

    Article  PubMed  CAS  Google Scholar 

  • Ciani, E., Calvanese, V., Crochemore, C., Bartesaghi, R., & Contestabile, A. (2006). Proliferation of cerebellar precursor cells is negatively regulated by nitric oxide in newborn rat. Journal of Cell Science, 119, 3161–3170.

    Article  PubMed  CAS  Google Scholar 

  • Ciani, E., Severi, S., Contestabile, A., Bartesaghi, R., & Contestabile, A. (2004). Nitric oxide negatively regulates proliferation and promotes neuronal differentiation through N-Myc downregulation. Journal of Cell Science, 117, 4727–4737.

    Article  PubMed  CAS  Google Scholar 

  • Ciaroni, S., Cecchini, T., Cuppini, R., Ferri, P., Ambrogini, P., Bruno, C., et al. (2000). Are there proliferating neuronal precursors in adult rat dorsal root ganglia? Neuroscience Letters, 281(1), 69–71.

    Article  PubMed  CAS  Google Scholar 

  • Conaco, C., Otto, S., Han, J. J., & Mandel, G. (2006). Reciprocal actions of REST and a microRNA promote neuronal identity. Proceedings of the National Academy of Sciences of the United States of America, 103(7), 2422–2427.

    Article  PubMed  CAS  Google Scholar 

  • Devor, M., & Govrin-Lippmann, R. (1991). Neurogenesis in adult rat dorsal root ganglia: On counting and the count. Somatosensory & Motor Research, 8(1), 9–12.

    CAS  Google Scholar 

  • Devor, M., Govrin-Lippmann, R., Frank, I., & Raber, P. (1985). Proliferation of primary sensory neurons in adult rat dorsal root ganglion and the kinetics of retrograde cell loss after sciatic nerve section. Somatosensory Research, 3(2), 139–167.

    PubMed  CAS  Google Scholar 

  • Escott, K. J., Beech, J. S., Haga, K. K., Williams, S. C., Meldrum, B. S., & Bath, P. M. (1998). Cerebroprotective effect of the nitric oxide synthase inhibitors, 1-(2-trifluoromethylphenyl) imidazole and 7-nitro indazole, after transient focal cerebral ischemia in the rat. Journal of Cerebral Blood Flow and Metabolism, 18, 281–287.

    PubMed  CAS  Google Scholar 

  • Estrada, C., & Murillo-Carretero, M. (2005). Nitric oxide and adult neurogenesis in health and disease. Neuroscientist, 11, 294–307.

    Article  PubMed  CAS  Google Scholar 

  • Farel, P. B. (2002). Sensory neuron addition in juvenile rat: Time course and specificity. Journal of Comparative Neurology, 449(2), 158–165.

    Article  PubMed  Google Scholar 

  • Farel, P. B. (2003). Late differentiation contributes to the apparent increase in sensory neuron number in juvenile rat. Brain Research. Developmental Brain Research, 144(1), 91–98.

    Article  PubMed  CAS  Google Scholar 

  • Friedman, B., Zaremba, S., & Hockfield, S. (1990). Monoclonal antibody Rat 401 recognizes Schwann cells in mature and developing peripheral nerve. Journal of Comparative Neurology, 295, 43–51.

    Article  PubMed  CAS  Google Scholar 

  • Gage, F. H. (2000). Mammalian neural stem cells. Science, 287(5457), 1433–1438.

    Article  PubMed  CAS  Google Scholar 

  • Goldman, S. A., & Luskin, M. B. (1998). Strategies utilized by migrating neurons of the postnatal vertebrate forebrain. Trends in Neuroscience, 21(3), 107–114.

    Article  CAS  Google Scholar 

  • Groves, M. J., Schanzer, A., Simpson, A. J., An, S. F., Kuo, L. T., & Scaravilli, F. (2003). Profile of adult rat sensory neuron loss, apoptosis and replacement after sciatic nerve crush. Journal of Neurocytology, 32(2), 113–122.

    Article  PubMed  CAS  Google Scholar 

  • Hess, D. T., Matsumoto, A., Kim, S. O., Marshall, H. E., & Stamler, J. S. (2005). Protein S-nitrosylation: Purview and parameters. Nature Reviews. Molecular Cell Biology, 6(2), 150–166.

    Article  PubMed  CAS  Google Scholar 

  • Hockfield, S., & McKay, R. D. (1985). Identification of major cell classes in the developing mammalian nervous system. Journal of Neuroscience, 5, 3310–3328.

    PubMed  CAS  Google Scholar 

  • Holscher, C. (1999). Nitric oxide is required for expression of LTP that is induced by stimulation phase-locked with theta rhythm. European Journal of Neuroscience, 11, 335–343.

    Article  PubMed  CAS  Google Scholar 

  • Immaneni, A., Lawinger, P., Zhao, Z., Lu, W., Rastelli, L., Morris, J.H., et al. (2000). REST-VP16 activates multiple neuronal differentiation genes in human NT2 cells. Nucleic Acids Research, 28, 3403–3410.

    Article  PubMed  CAS  Google Scholar 

  • Kato, T., Yokouchi, K., Li, Z., Fukushima, N., Kawagishi, K., & Moriizumi, T. (1999). Calretinin-immunoreactive neurons in rostral migratory stream: Neuronal differentiation. NeuroReport, 10, 2769–2972.

    Article  PubMed  CAS  Google Scholar 

  • Kuo, L. T., Simpson, A., Schanzer, A., Tse, J., An, S. F., Scaravilli, F., et al. (2005). Effects of systemically administered NT-3 on sensory neuron loss and nestin expression following axotomy. Journal of Comparative Neurology, 482(4), 320–332.

    Article  PubMed  CAS  Google Scholar 

  • La Forte, R. A., Melville, S., Chung, K., & Coggeshall, R. E. (1991). Absence of neurogenesis of adult rat dorsal root ganglion cells. Somatosensory & Motor Research, 8(1), 3–7.

    Google Scholar 

  • Lee, Y., & Shin, T. (2002). Expression of constitutive endothelial and inducible nitric oxide synthase in the sciatic nerve of Lewis rats with experimental autoimmune neuritis. Journal of Neuroimmunology, 126, 78–85.

    Article  PubMed  CAS  Google Scholar 

  • Lendahl, U., Zimmerman, L. B., & McKay, R. D. (1990). CNS stem cells express a new class of intermediate filament protein. Cell, 60, 585–595.

    Article  PubMed  CAS  Google Scholar 

  • Leung, S. W., Cheng, X., Lim, S. L., & Pang, C. C. (2003). Augmented pulmonary vascular and venous constrictions to N(G)-nitro-L-arginine methyl ester in rats with monocrotaline-induced pulmonary hypertension. Pharmacology, 69, 164–170.

    Article  PubMed  CAS  Google Scholar 

  • Matarredona, E. R., Murillo-Carretero, M., Moreno-Lopez, B., & Estrada, C. (2004). Nitric oxide synthesis inhibition increases proliferation of neural precursors isolated from the postnatal mouse subventricular zone. Brain Research, 995, 274–284.

    Article  PubMed  CAS  Google Scholar 

  • Merkle, F. T., & Alvarez-Buylla, A. (2006). Neural stem cells in mammalian development. Current Opinion in Cell Biology, 18(6), 704–709.

    Google Scholar 

  • Mori, N., Schoenherr, C., Vandenbergh, D. J., & Anderson, D. J. (1992). A common silencer element in the SCG10 and type II Na+ channel genes binds a factor present in nonneuronal cells but not in neuronal cells. Neuron, 9, 45–54.

    Article  PubMed  CAS  Google Scholar 

  • Mujtaba, T., Mayer-Proschel, M., & Rao, M. S. (1998). A common neural progenitor for the CNS and PNS. Developments in Biologicals, 200, 1–15.

    Article  CAS  Google Scholar 

  • Nagata, Y., Ando, M., Takahama, K., Iwata, M., Hori, S., & Kato, K. (1987). Retrograde transport of endogenous nerve growth factor in superior cervical ganglion of adult rats. Journal of Neurochemistry, 49, 296–302.

    Article  PubMed  CAS  Google Scholar 

  • Namaka, M. P., Sawchuk, M., MacDonald, S. C., Jordan, L. M., & Hochman, S. (2001). Neurogenesis in postnatal mouse dorsal root ganglia. Experimental Neurology, 172(1), 60–69.

    Article  PubMed  CAS  Google Scholar 

  • Packer, M. A., Stasiv, Y., Benraiss, A., Chmielnicki, E., Grinberg, A., Westphal, H., et al. (2003). Nitric oxide negatively regulates mammalian adult neurogenesis. Proceedings of the National Academy of Sciences of the United States of America, 100, 9566–9571.

    Article  PubMed  CAS  Google Scholar 

  • Palm, K., Belluardo, N., Metsis, M., & Timmusk, T. (1998). Neuronal expression of zinc finger transcription factor REST/NRSF/XBR gene. Journal of Neuroscience, 18, 1280–1296.

    PubMed  CAS  Google Scholar 

  • Peunova, N., & Enikolopov, G. (1995). Nitric oxide triggers a switch to growth arrest during differentiation of neuronal cells. Nature, 375(6526), 68–73.

    Article  PubMed  CAS  Google Scholar 

  • Popken, G. J., & Farel, P. B. (1997). Sensory neuron number in neonatal and adult rats estimated by means of stereologic and profile-based methods. Journal of Comparative Neurology, 386(1), 8–15.

    Article  PubMed  CAS  Google Scholar 

  • Rice, A. C., Khaldi, A., Harvey, H. B., Salman, N. J., White, F., Fillmore, H., et al. (2003). Proliferation and neuronal differentiation of mitotically active cells following traumatic brain injury. Experimental Neurology, 183, 406–417.

    Article  PubMed  CAS  Google Scholar 

  • Roopra, A., Sharling, L., Wood, I. C., Briggs, T., Bachfischer, U., Paquette, A. J., et al. (2000). Transcriptional repression by neuron-restrictive silencer factor is mediated via the Sin3-histone deacetylase complex. Molecular and Cellular Biology, 20, 2147–2157.

    Article  PubMed  CAS  Google Scholar 

  • Shi, T. J., Holmberg, K. Xu, Z. Q., Steinbusch, H., de Vente, J., & Hökfelt, T. (1998). Effect of peripheral nerve injury on cGMP and nitric oxide synthase levels in rat dorsal root ganglia: Time course and coexistence. Pain, 78, 171–180.

    Article  PubMed  CAS  Google Scholar 

  • Singh, R. P., & Zhou, F. C. (2002). Progenitorship of the embryonic and adult dorsal root ganglia cells. Experimental Neurology, 175, 433.

    Google Scholar 

  • Tashiro, A., Sandler, V. M., Toni, N., Zhao, C., & Gage, F. H. (2006). NMDA-receptor-mediated, cell-specific integration of new neurons in adult dentate gyrus. Nature, 442(7105), 929–933.

    Article  PubMed  CAS  Google Scholar 

  • Thippeswamy, T., & Morris, R. (1997a). Nerve growth factor inhibits expression of neuronal nitric oxide synthase in dissociated cultures of dorsal root ganglia. Neuroscience Letters, 230, 9–12.

    Article  CAS  Google Scholar 

  • Thippeswamy, T., & Morris, R. (1997b). Cyclic guanosine 3,5-monophosphate (cGMP) mediated neuroprotection by nitric oxide in dissociated cultures of rat dorsal root ganglion neurons. Brain Research, 774, 116–122.

    Article  CAS  Google Scholar 

  • Thippeswamy, T., & Morris, R. (2001). Evidence that nitric oxide induced synthesis of cGMP occurs in a paracrine but not autocrine fashion and that the site of its release can be regulated: Studies in dorsal root ganglia in vivo and in vitro. Nitric Oxide: Biology Chemistry, 5, 105–115.

    Article  CAS  Google Scholar 

  • Thippeswamy, T., McKay, J. S., & Morris, R. (2001a). Bax and caspases are inhibited by endogenous nitric oxide in dorsal root ganglion neurons in vitro. European Journal of Neuroscience, 14(8), 1229–1236.

    Article  CAS  Google Scholar 

  • Thippeswamy, T., Mumtaz, N., Jain, R. K., & Morris, R. (2001b). Inhibition of neuronal nitric oxide synthase results in neurodegenerative changes in the axotomized dorsal root ganglion neurons: Evidence for a neuroprotective role of NO in vivo. Neuroscience Research, 40, 37–44.

    Article  CAS  Google Scholar 

  • Thippeswamy, T., Mckay, J. S., Morris, R., Quinn, J., Wong, L. F., & Murphy, D. (2005a). Glial-mediated neuroprotection: Evidence for the protective role of the NO-cGMP pathway via neuron–glial communication in the peripheral nervous system. Glia, 49, 197–210.

    Article  Google Scholar 

  • Thippeswamy, T., McKay, J. S., Quinn, J., & Morris, R. (2005b). Either nitric oxide or nerve growth factor is required for dorsal root ganglion neurons to survive during embryonic and neonatal development. Developmental Brain Research, 154, 153–164.

    Article  CAS  Google Scholar 

  • Thippeswamy, T., Haddley, K., Corness, J. D., Howard, M. R., McKay, J. S., Stephanie, M., et al. (2006). NO-cGMP mediated galanin expression in NGF-deprived or axotomized sensory neurons. Journal of Neurochemistry, doi:10.1111/j.1471-4159.2006.04243.x.

  • Volosin, M., Song, W., Almeida, R. D., Kaplan, D. R., Hempstead, B. L., & Friedman, W. J. (2006). Interaction of survival and death signaling in basal forebrain neurons: Roles of neurotrophins and proneurotrophins. Journal of Neuroscience, 26(29), 7756–7766.

    Article  PubMed  CAS  Google Scholar 

  • Woodbury, D., Schwarz, E. J., Prockop, D. J., & Black, I. B. (2000). Adult rat and human bone marrow stromal cells differentiate into neurons. Journal of Neuroscience Research, 61, 364–370.

    Article  PubMed  CAS  Google Scholar 

  • Yun, H. Y., Gonzalez-Zulueta, M., Valina, L., Dawson, V. L., & Dawson, T. M. (1998). Nitric oxide mediates N-methyl-D-aspartate receptor-induced activation of p21ras. Proceedings of the National Academy of Sciences of the United States of America, 95(10), 5773–5778.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, X., Verge, V., Wiesenfeld-Hallin, Z., Ju, G., Bredt, D., Synder, S. H., et al. (1993). Nitric oxide synthase-like immunoreactivity in lumbar dorsal root ganglia and spinal cord of rat and monkey and effect of peripheral axotomy. Journal of Comparative Neurology, 335, 563–575.

    Article  PubMed  CAS  Google Scholar 

  • Zhou, X. F., Deng, Y. S., Chie, E., Xue, Q., Zhong, J. H., McLachlan, E. M., et al. (1999). Satellite-cell-derived nerve growth factor and neurotrophin-3 are involved in noradrenergic sprouting in the dorsal root ganglia following peripheral nerve injury in the rat. European Journal of Neuroscience, 11(5), 1711–1722.

    Article  PubMed  CAS  Google Scholar 

  • Zhu, X. J., Hua, Y., Jiang, J., Zhou, Q. G., Luo, C. X., Han, X., et al. (2006). Neuronal nitric oxide synthase-derived nitric oxide inhibits neurogenesis in the adult dentate gyrus by down-regulating cyclic AMP response element binding protein phosphorylation. Neuroscience, 141(2), 827–836.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thimmasettappa Thippeswamy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arora, D.K., Cosgrave, A.S., Howard, M.R. et al. Evidence of Postnatal Neurogenesis in Dorsal Root Ganglion: Role of Nitric Oxide and Neuronal Restrictive Silencer Transcription Factor. J Mol Neurosci 32, 97–107 (2007). https://doi.org/10.1007/s12031-007-0014-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-007-0014-7

Keywords

Navigation