Skip to main content

Tyr687 dependent APP endocytosis and abeta production

Abstract

The neurotoxic Abeta peptide is derived by proteolytic processing from the Alzheimer’s amyloid precursor protein (APP), whose short cytoplasmic domain contains several phosphorylatable amino acids. The latter can be phosphorylated ‘in vitro’ and ‘in vivo,’ and in some cases phosphorylation appears to be associated with the disease condition. Using APP-GFP fusion proteins to monitor APP processing, the role of Tyr687 was addressed by mimicking its constitutive phosphorylation (Y687E) and dephosphorylation (Y687F). Contrasting effects on subcellular APP distribution were observed. Y687E-APP-GFP was targeted to the membrane but could not be detected in transferrin containing vesicular structures, and exhibited a concomitant and dramatic decrease in Abeta production. In contrast, Y687F-APP-GFP was endocytosed similarly to wild type APP, but was relatively favoured for beta-secretase cleavage. Overall, Tyr687 appears to be a critical residue determining APP targeting and processing via different pathways, including endocytosis and retrograde transport. Significantly, from a disease perspective, mimicking Tyr687 phosphorylation resulted in a hitherto undescribed inhibition of Abeta production. Our results provide novel insights into the role of direct APP phosphorylation on APP targeting, processing and Abeta production.

This is a preview of subscription content, access via your institution.

References

  1. Ando, K., Iijima, K. I., Elliot, J. I., Kirino, Y., & Suzuki, T. (2001). Phosphorylation-dependent regulation of the interaction of amyloid precursor protein with Fe65 affects the production of beta-amyloid. Journal of Biological Chemistry, 276, 40353–40361.

    PubMed  Article  CAS  Google Scholar 

  2. Benmerah, A., Lamaze, C., Begue, B., Schmid, S. L., Dautry-Varsat, A., & Cerf-Bensussan, N. (1998). AP-2/Eps15 interaction is required for receptor-mediated endocytosis. Journal of Cell Biology, 140, 1055–1062.

    PubMed  Article  CAS  Google Scholar 

  3. Bennett, B. D., Babu-Khan, S., Loeloff, R., Louis, J. C., Curran, E., Citron, M., et al. (2000). Expression analysis of BACE2 in brain and peripheral tissues. Journal of Biological Chemistry, 275, 20647–20651.

    PubMed  Article  CAS  Google Scholar 

  4. Borg, J. P., Lopez-Figueroa, M. O., de Taddeo-Borg, M., Kroon, D. E., Turner, R. S., Watson, S. J., et al. (1999). Molecular analysis of the X11-mLin-2/CASK complex in brain. Journal of Neuroscience, 19, 1307–1316.

    PubMed  CAS  Google Scholar 

  5. Bressler, S. L., Gray, M. D., Sopher, B. L., Hu, Q., Hearn, M. G., Pham, D. G., et al. (1996). cDNA cloning and chromosome mapping of the human Fe65 gene: Interaction of the conserved cytoplasmic domains of the human beta-amyloid precursor protein and its homologues with the mouse Fe65 protein. Human Molecular Genetics, 5, 1589–1598.

    PubMed  Article  CAS  Google Scholar 

  6. Chen, W. J., Goldstein, J. L. & Brown, M. S. (1990). NPXY, a sequence often found in cytoplasmic tails, is required for coated pit-mediated internalization of the low-density lipoprotein receptor. Journal of Biological Chemistry, 265, 3116–3123.

    PubMed  CAS  Google Scholar 

  7. Capell, A., Beher, D., Prokop, S., Steiner, H., Kaether, C., Shearman, M. S., et al. (2005). Gamma-secretase complex assembly within the early secretory pathway. Journal of Biological Chemistry, 280, 6471–6478.

    PubMed  Article  CAS  Google Scholar 

  8. da Cruz e Silva, E. F., & da Cruz e Silva, O. A. (2003). Protein phosphorylation and APP metabolism. Neurochemical Research, 28, 1553–1561.

    PubMed  Article  Google Scholar 

  9. da Cruz e Silva, O. A., Fardilha, M., Henriques, A. G., Rebelo, S., Vieira, S., & da Cruz e Silva, E. F. (2004a). Signal transduction therapeutics: Relevance for Alzheimer’s disease. Journal of Molecular Neuroscience, 23, 123–142.

    PubMed  Article  Google Scholar 

  10. da Cruz e Silva, O. A., Vieira, S. I., Rebelo, S., & da Cruz e Silva, E. F. (2004b). A model system to study intracellular trafficking and processing of the Alzheimer’s Amyloid Precursor Protein. Neurodegenerative Diseases, 1, 196–204.

    PubMed  Article  Google Scholar 

  11. Esler, W. P., Kimberly, W. T., Ostaszewski, B. L., Ye, W., Diehl, T. S., Selkoe, D. J., et al. (2002). Activity-dependent isolation of the presenilin-gamma-secretase complex reveals nicastrin and a gamma substrate. Proceedings of the National Academy of Sciences of the United States of America, 99, 2720–2725.

    PubMed  Article  CAS  Google Scholar 

  12. Esselmann, H., Maler, J. M., Kunz, N., Otto, M., Paul, S., Lewczuk, P., et al. (2004). Lithium decreases secretion of Aβ1-42 and C-truncated species Aβ1-37/38/39/40 in chicken telencephalic cultures but specifically increases intracellular Aβ1-38. Neurodegenerative Diseases, 1, 236–241.

    PubMed  Article  CAS  Google Scholar 

  13. Gandy, S., & Greengard, P. (1994). Regulated cleavage of the Alzheimer amyloid precursor protein: Molecular and cellular basis. Biochimie, 76, 300–303.

    PubMed  Article  CAS  Google Scholar 

  14. Homayouni, R., Rice, D. S., Sheldon, M., & Curran, T. (1999). Disabled-1 binds to the cytoplasmic domain of amyloid precursor-like protein 1. Journal of Neuroscience, 19, 7507–7515.

    PubMed  CAS  Google Scholar 

  15. Kinoshita, A., Whelan, C. M., Berezovska, O., & Hyman, B. T. (2002). The gamma secretase-generated carboxyl-terminal domain of the amyloid precursor protein induces apoptosis via Tip60 in H4 cells. Journal of Biological Chemistry, 277, 28530–28536.

    PubMed  Article  CAS  Google Scholar 

  16. Koo, E. H., & Squazzo, S. L. (1994). Evidence that production and release of amyloid beta-protein involves the endocytic pathway. Journal of Biological Chemistry, 269, 17386–17389.

    PubMed  CAS  Google Scholar 

  17. Kroenke, C. D., Ziemnicka-Kotula, D., Xu, J., Kotula, L., & Palmer, A. G. (1997). Solution conformations of a peptide containing the cytoplasmic domain sequence of the beta amyloid precursor protein. Biochemistry, 36, 8145–8152.

    PubMed  Article  CAS  Google Scholar 

  18. Lai, A., Sisodia, S. S., & Trowbridge, I. S. (1995). Characterization of sorting signals in the beta-amyloid precursor protein cytoplasmic domain. Journal of Biological Chemistry, 270, 3565–3573.

    PubMed  Article  CAS  Google Scholar 

  19. Lee, S. F., Shah, S., Li, H., Yu, C., Han, W., & Yu, G. (2000). Mammalian APH-1 interacts with presenilin and nicastrin and is required for intramembrane proteolysis of amyloid-beta precursor protein and Notch. Journal of Biological Chemistry, 277, 45013–45019.

    Article  Google Scholar 

  20. Lee, M. S., Kao, S. C., Lemere, C. A., Xia, W., Tseng, H. C., Zhou, Y., et al. (2003). APP processing is regulated by cytoplasmic phosphorylation. Journal of Cell Biology, 163, 83–95.

    PubMed  Article  CAS  Google Scholar 

  21. Li, Y. M., Lai, M. T., Xu, M., Huang, Q., DiMuzio-Mower, J., Sardana, M. K., et al. (2000a). Presenilin 1 is linked with gamma-secretase activity in the detergent solubilized state. Proceedings of the National Academy of Sciences of the United States of America, 97, 6138–6143.

    PubMed  Article  CAS  Google Scholar 

  22. Li, Y. M., Xu, M., Lai, M. T., Huang, Q., Castro, J. L., DiMuzio-Mower, J., et al. (2000b). Photoactivated gamma-secretase inhibitors directed to the active site covalently label presenilin 1. Nature, 405, 689–694.

    PubMed  Article  CAS  Google Scholar 

  23. McLoughlin, D. M., & Miller, C. C. (1999). The intracellular cytoplasmic domain of the Alzheimer’s disease amyloid precursor protein interacts with phosphotyrosine-binding domain proteins in the yeast two-hybrid system. FEBS Letters, 397, 197–200.

    Article  Google Scholar 

  24. Nakaya, T., & Suzuki, T. (2006). Role of APP phosphorylation in FE65-dependent gene transactivation mediated by AICD. Genes Cells, 11, 633–645.

    PubMed  Article  CAS  Google Scholar 

  25. Nixon, R. A., Mathews, P. M., & Cataldo, A. M. (2001). The neuronal endosomal-lysosomal system in Alzheimer’s disease. Journal of Alzheimer’s Disease, 3, 97–107.

    PubMed  CAS  Google Scholar 

  26. Oishi, M., Nairn, A. C., Czernik, A. J., Lim, G. S., Isohara, T., Gandy, et al. (1997). The cytoplasmic domain of Alzheimer’s amyloid precursor protein is phosphorylated at Thr654, Ser655, and Thr668 in adult rat brain and cultured cells. Molecular Medicine, 3, 111–123.

    PubMed  CAS  Google Scholar 

  27. Perez, R. G., Soriano, S., Hayes, J. D., Ostaszewski, B., Xia, W., Selkoe, D. J., et al. (1999). Mutagenesis identifies new signals for beta-amyloid precursor protein endocytosis, turnover, and the generation of secreted fragments, including Abeta42. Journal of Biological Chemistry, 274, 18851–18856.

    PubMed  Article  CAS  Google Scholar 

  28. Ramelot, T. A., Gentile, L. N., & Nicholson, L. K. (2000). Transient structure of the amyloid precursor protein cytoplasmic tail indicates preordering of structure for binding to cytosolic factors. Biochemistry, 39, 2714–2725.

    PubMed  Article  CAS  Google Scholar 

  29. Rebelo, S., Henriques, A. G., da Cruz E Silva, E. F., & da Cruz E Silva, A. O. B. (2004). Effect of cell density on intracellular levels of the Alzheimer’s amyloid precursor protein. Journal of Neuroscience Research, 76, 406–414.

    PubMed  Article  CAS  Google Scholar 

  30. Sabo, S. L., Ikin, A. F., Buxbaum, J. D., & Greengard, P. (2001). The Alzheimer amyloid precursor protein (APP) and FE65, an APP-binding protein, regulate cell movement. Journal of Cell Biology, 153, 1403–1414.

    PubMed  Article  CAS  Google Scholar 

  31. Steiner, H., Winkler, E., Edbauer, D., Prokop, S., Basset, G., Yamasaki, A., et al. (2002). PEN-2 is an integral component of the gamma-secretase complex required for coordinated expression of presenilin and nicastrin. Journal of Biological Chemistry, 277, 39062–39065J.

    PubMed  Article  CAS  Google Scholar 

  32. Tarr, P. E., Contursi, C., Roncarati, R., Noviello, C., Ghersi, E., Scheinfeld, M. H., et al. (2002). Evidence for a role of the nerve growth factor receptor TrkA in tyrosine phosphorylation and processing of beta-APP. Biochemical and Biophysical Research Communications, 295, 324–329.

    PubMed  Article  CAS  Google Scholar 

  33. Vassar, R., Bennett, B. D., Babu-Khan, S., Kahn, S., Mendiaz, E. A., Denis, P., et al. (1999). Beta-secretase cleavage of Alzheimer’s amyloid precursor protein by the transmembrane aspartic protease BACE. Science, 286, 735–741.

    PubMed  Article  CAS  Google Scholar 

  34. Verdile, G., Gandy, S. E., Martins, R. N. (2006). The Role of Presenilin and its Interacting Proteins in the Biogenesis of Alzheimer’s Beta Amyloid. Neurochemical Research 2006 Aug 31, in press.

  35. Wahle, T., Prager, K., Raffler, N., Haass, C., Famulok, M., & Walter, J. (2005). GGA proteins regulate retrograde transport of BACE1 from endosomes to the trans-Golgi network. Molecular and Cellular Biochemistry, 29, 453–461.

    CAS  Google Scholar 

  36. Wiltfang, J., Esselmann, H., Cupers, P., Neumann, M., Kretzschmar, H., Beyermann, M., et al. (2001). Elevation of beta-amyloid peptide 2–42 in sporadic and familial Alzheimer’s disease and its generation in PS1 knockout cells. Journal of Biological Chemistry, 276, 42645–42657.

    PubMed  Article  CAS  Google Scholar 

  37. Wiltfang, J., Esselmann, H., Bibl, M., Smirnov, A., Otto, M., Paul, S., et al. (2002). Highly conserved and disease-specific patterns of carboxyterminally truncated Abeta peptides 1–37/38/39 in addition to 1–40/42 in Alzheimer’s disease and in patients with chronic neuroinflammation. Journal of Neurochemistry, 81, 481–496.

    PubMed  Article  CAS  Google Scholar 

  38. Yan, R., Munzner, J. B., Shuck, M. E., & Bienkowski, M. J. (2001). BACE2 functions as an alternative alpha-secretase in cells. Journal of Biological Chemistry, 276, 34019–34027.

    PubMed  Article  CAS  Google Scholar 

  39. Zambrano, N., Bruni, P., Minopoli, G., Mosca, R., Molino, D., Russo, C., et al. (2001). The beta-amyloid precursor protein APP is tyrosine-phosphorylated in cells expressing a constitutively active form of the Abl protoncogene. Journal of Biological Chemistry, 276, 19787–19792.

    PubMed  Article  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to O. A. B. da Cruz e Silva.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Rebelo, S., Vieira, S.I., da Cruz e Silva, O.A.B. et al. Tyr687 dependent APP endocytosis and abeta production. J Mol Neurosci 32, 1–8 (2007). https://doi.org/10.1007/s12031-007-0001-z

Download citation

Keywords

  • APP phosphorylation
  • Tyr687
  • Endocytosis
  • Abeta
  • APP processing