Advertisement

Journal of Molecular Neuroscience

, Volume 19, Issue 1–2, pp 213–217 | Cite as

Development of indole-3-propionic acid (OXIGON™) for alzheimer’s disease

  • Paul E. BendheimEmail author
  • Burkhard Poeggeler
  • Eyal Neria
  • Vivi Ziv
  • Miguel A. Pappolla
  • Daniel G. Chain
Clinical Drug Development

Abstract

The accumulation of amyloid-beta and concomitant oxidative stress are major pathogenic events in Alzheimer’s disease. Indole-3-propionic acid (IPA, OXIGON™) is a potent anti-oxidant devoid of pro-oxidant activity. IPA has been demonstrated to be an inhibitor of beta-amyloid fibril formation and to be a potent neuroprotectant against a variety of oxidotoxins. This review will summarize the known properties of IPA and outline the rationale behind its selection as a potential disease-modifying therapy for Alzheimer’s disease.

Index Entries

Alzheimer’s disease beta-amyloid oxidative stress indole-3-propionic acid 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ames B. N., Shigenaga M. K., and Hagen T.M. (1993) Oxidants, antioxidants, and the degenerative diseases of aging. Proc. Natl. Acad. Sci. USA 90, 7915–7922.PubMedCrossRefGoogle Scholar
  2. Aust A. E. and Eveleigh J. F. (1999) Mechanism of DNA oxidation. Proc. Soc. Exp. Biol. Med. 222, 246–252.PubMedCrossRefGoogle Scholar
  3. Beal M. F. (1995) Aging, energy, and oxidative stress in neurodegenerative diseases. Ann. Neurol. 38, 357–366.PubMedCrossRefGoogle Scholar
  4. Behl C., Davis J., Cole G. M., and Schubert D. (1992) Vitamin E protects nerve cells from amyloid-beta protein toxicity. Biochem. Biophys. Res. Comm. 186, 944–950.PubMedCrossRefGoogle Scholar
  5. Chyan Y.-J., Poeggeler B., Omar R. A., Chain D. G., Frangione B., Ghiso J., and Pappolla M. A. (1999) Potent neuroprotective properties against the Alzheimer β-amyloid by an endogenous melatonin-related indole structure, indole-3-propionic acid. J. Biol. Chem. 274, 21937–21942.PubMedCrossRefGoogle Scholar
  6. Delanty N. and Dichter M. A. (2000) Antioxidant therapy in neurologic disease. Arch. Neurol. 57, 1265–1270.PubMedCrossRefGoogle Scholar
  7. Floyd R. A. (1999) Antioxidants, oxidative stress, and degenerative neurological disorders. Proc. R. Soc. Exp. Biol. Med. 222, 236–245.CrossRefGoogle Scholar
  8. Iadecola C., Zhang F., Niwa K., Eckman C., Turner S. K., Fischer E., et al. (1999) SOD1 rescues cerebral endothelial dysfunction in mice overexpressing amyloid precursor protein. Nature Neuroscience 2, 157–161.PubMedCrossRefGoogle Scholar
  9. Karbownik M., Garcia J. J., Lewiński A., and Reiter R. J. (2001a) Carcinogen-induced, free radical-mediated reduction in microsomal membrane fluidity: reversal by indole-3-propionic acid. J. Bioenerget. Biomembr. 33, 73–78.CrossRefGoogle Scholar
  10. Karbownik M., Gitto E., Lewinski A., and Reiter R. J. (2001b) Relative efficacies of indole antioxidants in reducing autoxidation and iron-induced peroxidation in hamster testes. J. Cell. Biochem. 81, 693–699.PubMedCrossRefGoogle Scholar
  11. Karbownik M., Reiter R. J., Cabrera J., and Garcia J. J. (2001c) Comparison of the protective effect of melatonin with other antioxidants in the hamster kidney model of estradiol-induced DNA damage. Mutat. Res. 474, 87–92.PubMedGoogle Scholar
  12. Karbownik M., Reiter R. J., Garcia J. J., Cabrera J., Burkhardt S., Osuna C., and Lewiński A. (2001d) Indole-3-propionic acid, a melatonin-related molecule, protects hepatic microsomal membranes from iron-induced oxidative damage: relevance to cancer reduction. J. Cell. Biochem. 81, 507–513.PubMedCrossRefGoogle Scholar
  13. Klein W. L., Krafft G. A., and Finch C. E. (2001) Targeting small Aβ oligomers: the solution to an Alzheimer’s disease conundrum? Trends Neurosci. 24, 219–224.PubMedCrossRefGoogle Scholar
  14. Lambert M. P., Barlow A. K., Chromy B. A., Edwards C., Freed R., Liosatos M., et al. (1998) Diffusible, nonfibrillar ligands derived from Aβ1–42 are potent central nervous system neurotoxins. Proc. Natl. Acad. Sci. USA 95, 6448–6453.PubMedCrossRefGoogle Scholar
  15. Lloyd D. R., Carmichael P. L., and Phillips D. H. (1998) Comparison of the formation of 8-hydroxy-2-deoxyguanosione and single-and double-strand breaks in DNA mediated by Fenton reaction. Chem. Res. Toxicol. 11, 420–427.PubMedCrossRefGoogle Scholar
  16. Markesbery W. R. and Carney J. M. (1999) Oxidative alterations in Alzheimer’s disease. Brain Pathol. 9, 133–146.PubMedCrossRefGoogle Scholar
  17. Mattson M. P., Pedersen W. A., Duan W., Culmsee C., and Camandola S. (1999) Cellular and molecular mechanisms underlying perturbed energy metabolism and neuronal degeneration in Alzheimer’s and Parkinson’s diseases. Ann. NY Acad. Sci. 893, 154–175.PubMedCrossRefGoogle Scholar
  18. Pappolla M. A., Omar R. A., Kim K. S., and Robakis N. K. (1992) Immunohistochemical evidence of oxidative stress in Alzheimer’s disease. Am. J. Pathol. 140, 621–628.PubMedGoogle Scholar
  19. Pereira C., Santos M. S., and Oliveira C. (1999) Involvement of oxidative stress on the impairment of energy metabolism induced by Aβ peptides on PC12 cells: protection y antioxidants. Neurobiol. Disease 6, 209–219.CrossRefGoogle Scholar
  20. Poeggeler B., Chyan Y.-J., Bryant T., Wisniewski T., Frangione B., Ghiso J., and Pappolla M. A. (1999a) Melatonin abolishes the pro-aggregatory effects of ApoE4 on the Alzheimer β-protein. Soc. Neurosci. 25(abst.), 1805.Google Scholar
  21. Poeggeler B., Pappolla M. A., Hardeland R., Rassoulpour A., Hodgkins P. S., Guidetti P., and Schwarz R. (1999b) Indole-3-propionate: a potent hydroxyl radical scavenger in rat brain. Brain Res. 815, 382–388.PubMedCrossRefGoogle Scholar
  22. Praticò D. and Delanty N. (2000) Oxidative injury in diseases of the central nervous system: focus on Alzheimer’s disease. Am. J. Med. 109, 577–585.PubMedCrossRefGoogle Scholar
  23. Praticò D., Uryu K., Leight S., Trojanowski J. Q., and Lee V. M.-Y. (2001) Increased lipid peroxidation precedes amyloid plaque formation in an animal model of Alzheimer amyloidosis. J. Neurosci. 21, 4183–4187.PubMedGoogle Scholar
  24. Qi W., Reiter R. J., Tan D.-X., Manchester L. C., Siu A. W., and Garcia J. J. (2000) Increased levels of oxidatively damaged DNA induced by chromium(III) and H2O2: protection by melatonin and related molecules. J. Pineal Res. 29, 54–61.PubMedCrossRefGoogle Scholar
  25. Reiter R. J. (1995) Oxidative processes and antioxidative defense mechanisms in the aging brain. FASEB J. 9, 526–533.PubMedGoogle Scholar
  26. Roberts L. J. 2nd, Montine T. J., and Markesbery W. R. (1998) Formation of isoprostane-like compounds (neuroprostanes) in vivo from docosahexaenoic acid. J. Biol. Chem. 273, 13605–13612.PubMedCrossRefGoogle Scholar
  27. Rosenberg R. N. (2000) The molecular and genetic basis of AD: the end of the beginning. Neurology 54, 2045–2054.PubMedGoogle Scholar
  28. Selkoe D. J. (2001) Alzheimer’s disease: genes, proteins and therapy. Physiological Reviews 81, 741–766.PubMedGoogle Scholar
  29. Varadarajan S., Yatin S., Aksenova M., and Butterfield D. A. (2000) Review: Alzheimer’s amyloid β-peptide-associated free radical oxidative stress and neurotoxicity. J. Struct. Biol. 130, 184–208.PubMedCrossRefGoogle Scholar
  30. Weinberg E. D. (1996) The role of iron in cancer. Eur. J. Cancer Prevent. 5, 19–36.Google Scholar
  31. Young S., Anderson G. M., Gauthier S., and Purdy W. C. (1980) The origin of indoleacetic acid and indolepropionic acid in rat and human cerebrospinal fluid. J. Neurochem. 34, 1087–1092.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc 2002

Authors and Affiliations

  • Paul E. Bendheim
    • 1
    Email author
  • Burkhard Poeggeler
    • 2
  • Eyal Neria
    • 1
  • Vivi Ziv
    • 1
  • Miguel A. Pappolla
    • 3
  • Daniel G. Chain
    • 1
  1. 1.Mindset BioPharmaceuticals, LtdJerusalemIsrael
  2. 2.University of GöttingenGöttingenGermany
  3. 3.University of South AlabamaMobile

Personalised recommendations