Skip to main content

Advertisement

Log in

Alzheimer’s therapeutics

Neurotrophin small molecule mimetics

  • Lead Compound Discovery And Optimization
  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

A substantial portion of neuronal populations undergoing degeneration in Alzheimer’s and other neurode-generative disorders express neurotrophin receptors. Neurotrophin small molecule mimetics constitute candidate compounds that might be useful in preventing or delaying loss of neuronal function, neural networks or neuronal death in neurodegenerative states. We are testing the hypothesis that pharmacophores based on a combination of the crystal structures of neurotrophins and structure-activity relationships of active neurotrophin peptidomimetics can be used to screen small molecule libraries to identify non-peptide small molecules with neurotrophin agonist or antagonist activity. In preliminary screens using pharmacophores based on two nerve growth factor (NGF) loop domains, a number of small molecules have been identified that display neurotrophic activity using in vitro bioassays. Current studies are focused on determining whether these small molecules function via neurotrophin receptors and whether they activate neurotrophin signaling cascades. Assessment of structure-activity relationships between active and inactive small molecules will allow modification of pharmacophores and provide a basis for the iterative process if identifying compounds with increased potency and efficacy. A collection of such compounds will provide a basis for synthesis of compounds with targeted pharmacological properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Cummings J. L., Vinters H. V., Cole G. M., and Khachaturian Z. S. (1998) Alzheimer’s disease: etiologies, pathophysiology, cognitive reserve, and treatment opportunities. Neurology 51, S2–17.

    PubMed  CAS  Google Scholar 

  • Greferath U., Bennie A., Kourakis A., Bartlett P.F., Murphy M., and Barrett G. L. (2000) Enlarged cholinergic forebrain neurons and improved spatial learning in p75 knockout mice. Eur. J. Neurosci. 12, 885–893.

    Article  PubMed  CAS  Google Scholar 

  • Hughes R. A. and O’Leary P. D. (1999) Exploiting neurotrophic factors for the treatment of neurodegenerative conditions: an Australian perspective. Drug Dev. Res. 46, 268–276.

    Article  CAS  Google Scholar 

  • Kurogi Y. and Guner O. F. (2001) Pharmacophore modeling and three-dimensional database searching for drug design using catalyst. Curr. Med. Chem. 8, 1035–1055.

    PubMed  CAS  Google Scholar 

  • Longo F. M., Vu K., and Mobley W. C. (1990) The in vitro biological effect of nerve growth factor is inhibited by synthetic peptides. Cell Regul. 1, 189–195.

    PubMed  CAS  Google Scholar 

  • Longo F. M., Manthorpe M., Xie Y. M., and Varon S. (1997) Synthetic NGF peptide derivatives prevent neuronal death via a p75 receptor-dependent mechanism. J. Neurosci. Res. 48, 1–17.

    Article  PubMed  CAS  Google Scholar 

  • Maliartchouk S., Debeir T., Beglova N., Cuello A. C., Gehring K., and Saragovi H. U. (2000a) Genuine monovalent ligands of TrkA nerve growth factor receptors reveal a novel pharmacological mechanism of action. J. Biol. Chem. 275, 9946–9956.

    Article  PubMed  CAS  Google Scholar 

  • Maliartchouk S., Feng Y., Ivanisevic L., Debeir T., Cuello A.C., Burgess K., and Saragovi H. U. (2000b) A designed peptidomimetic agonistic ligand of TrkA NGF receptors. Mol. Pharmacol. 57, 385–391.

    PubMed  CAS  Google Scholar 

  • McDonald N. Q. and Chao M. V. (1995) Structural determinants of neurotrophin action. J. Biol. Chem. 270, 19669–19672.

    Article  PubMed  CAS  Google Scholar 

  • Smith D. E., Roberts J., Gage F. H., and Tuszynski M. H. (1999) Age-associated neuronal atrophy occurs in the primate brain and is reversible by growth factor gene therapy. Proc Natl Acad Sci USA 96, 10893–10898.

    Article  PubMed  CAS  Google Scholar 

  • Sofroniew M. V., Howe C. L., and Mobley W. C. (2001) Nerve growth factor signaling, neuroprotection, and neural repair. Annu. Rev. Neurosci. 24, 1217–1281.

    Article  PubMed  CAS  Google Scholar 

  • Xie Y., Tisi M. A., Yeo T. T., and Longo F. M. (2000) NGF loop 4 dimeric mimetics activate ERK and AKT and prevent neuronal death. J. Biol. Chem. 275, 29868–29874.

    Article  PubMed  CAS  Google Scholar 

  • Yeo T. T., Chua-Couzens J., Valletta J., Butcher L. L., Bredesen D. E., Mobley W. C., and Longo F. M. (1997) Absence of p75NTR causes increased basal forebrain cholinergic neuron size, ChAT activity and target innervation. J. Neurosci. 17, 7594–7605.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank M. Longo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Massa, S.M., Xie, Y. & Longo, F.M. Alzheimer’s therapeutics. J Mol Neurosci 19, 107–111 (2002). https://doi.org/10.1007/s12031-002-0019-1

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-002-0019-1

Index Entries

Navigation