Skip to main content
Log in

Nanotechnology-Based Drug Delivery Systems

  • Published:
NanoBiotechnology

Abstract

In recent years, there has been a considerable interest in the development of novel drug delivery systems using nanotechnology. Nanoparticles represent a promising drug delivery system of controlled and targeted release. In this context, nanosuspensions will be effective in increasing the solubility and bioavailability of poorly soluble drugs. This review focuses on advantages, method of preparation, physical characteristics, and evaluation of drug nanosuspensions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Nielloud F, Marti-Mestres G. Drugs and the pharmaceutical sciences. 2nd ed. New York: Informa Health Care; 2008. ISBN-10: 0824703049.

    Google Scholar 

  2. Liu R. Water-insoluble drug formulation: pharmaceutical emulsions and suspensions. 2nd ed. Boca Raton: CRC; 2008. ISBN-10: 1574911058.

    Google Scholar 

  3. Gao L, Zhang D, Chen M. Drug nanocrystals for the formulation of poorly soluble drugs and its application as a potential drug delivery system. J Nanopart Res. 2008;10(5):845–62.

    Article  CAS  Google Scholar 

  4. Shradhanjali B. Production and in vitro characterization of solid dosage form incorporating drug nanoparticles. Drug Dev Ind Pharm. 2008;34(11):1209–18.

    Article  Google Scholar 

  5. Torchilin VP. Nanotechnology in drugs. 2nd ed. London: Imperial College Press; 2008. ISBN-10: 1860946305.

    Google Scholar 

  6. Sahoo SK, Labhasetwar V. Nanotech approaches to drug delivery and imaging. Drug Discov Today. 2008;8(24):1112–20.

    Article  CAS  Google Scholar 

  7. Suri SS, Fenniri H, Singh B. Nanotechnology-based drug delivery systems. J Occup Med Toxicol. 2007;1:2–16.

    Google Scholar 

  8. Prakash S, Kulamarva AG. Recent advances in drug delivery: potential and limitations of carbon nanotubes. Recent Pat Drug Deliv Formul. 2007;1(3):214–21.

    Article  PubMed  CAS  Google Scholar 

  9. Salata OV. Applications of nanoparticles in biology and medicine. Journal of Nanobiotechnology. 2004;2(3):1–6.

    Google Scholar 

  10. Ferrari M. Cancer nanotechnology: opportunities and challenges. Nat Rev. 2005;5:161–71.

    CAS  Google Scholar 

  11. la Van DA, Mcguire T, Langer R. Small scale systems for in-vivo delivery. Nat Biotechnol. 2003;21(10):1184–91.

    Article  CAS  Google Scholar 

  12. Fettah Kosar T, Tourovskaia A, Stucky NL. Nanoparticles administered to the human body: impacts and implications. News from the Bottom. 2004:1–8.

  13. Kirupakar BR. Nanosuspension drug delivery: technology and application. Express Pharma Pulse. 2009:1–6.

  14. Gao L. Preparation and characterization of an oridonin nanosuspension for solubility and dissolution velocity enhancement. Drug Dev Ind Pharm. 2007;33(12):1332–9.

    Article  PubMed  CAS  Google Scholar 

  15. Filippos K, Santipharp P, Yunhui W. Application of nanoparticles in oral delivery of immediate release formulations. Current Nanoscience. 2007;3(2):183–90.

    Article  Google Scholar 

  16. Das S, Banerjee R, Bellare J. Aspirin loaded albumin nanoparticles by coacervation: implications in drug delivery. Trends Biomater Artif Organs. 2005;18(2):203–12.

    Google Scholar 

  17. Arnall AH. Future technologies, today’s choices nanotechnology, artificial intelligence and robotics; a technical, political and institutional map of emerging technologies. Research report. London: Greenpeace Environmental Trust; 2008.

    Google Scholar 

  18. Chingunpituk J. Nanosuspension technology for drug delivery. Walailak J Sci & Tech. 2007;4(2):139–53.

    Google Scholar 

  19. Stella VJ, He Q. Cyclodextrins. Toxicol Pathol. 2008;36(1):30–42.

    Article  PubMed  CAS  Google Scholar 

  20. Rasenack N, Steckel H, Muller BW. Micronization of anti-inflammatory drugs for pulmonary delivery by a controlled crystallization process. J Pharm Sci. 2003;92(1):35–44.

    Article  PubMed  CAS  Google Scholar 

  21. Steckel H, Rasenack N, Muller BW. In-situ-micronization of disodium cromoglycate for pulmonary delivery. Eur J Pharm Biopharm. 2003;55(2):173–80.

    Article  PubMed  CAS  Google Scholar 

  22. Steckel H. In vitro characterization of jet-milled and in-situ micronized fluticasone-17-propionate. Int J Pharm. 2003;258(1–2):65–75.

    Article  PubMed  CAS  Google Scholar 

  23. Rasenack N, Muller BW. Micron-size drug particles: common and novel micronization techniques. Pharm Dev Technol. 2004;9(1):1–13.

    Article  PubMed  CAS  Google Scholar 

  24. Liversidge GG. Surface modified drugs nanoparticles. US Patent 5,145,684. Sterling Drug New York; 1992.

  25. Muller RH. Pharmaceutical nanosuspensions for medicament administration as systems with increased saturation solubility and rate of solution, US Patent 5,858,410. 1999.

  26. Ostrander KD, Bosch HW, Bondanza DM. An in-vitro assessment of a NanoCrystal beclomethasone dipropionate colloidal dispersion via ultrasonic nebulization. Eur J Pharm Biopharm. 1999;48(3):207–15.

    Article  PubMed  CAS  Google Scholar 

  27. Sri KV. Preparation and characterization of quercetin and rutin cyclodextrin inclusion complexes. Drug Dev Ind Pharm. 2007;33(3):245–53.

    Article  PubMed  CAS  Google Scholar 

  28. Calabro ML. The rutin/beta-cyclodextrin interactions in fully aqueous solution: spectroscopic studies and biological assays. J Pharm Biomed Anal. 2005;36(5):1019–27.

    Article  PubMed  CAS  Google Scholar 

  29. Brewster ME, Loftsson T. Cyclodextrins as pharmaceutical solubilizers. Adv Drug Deliv Rev. 2007;59(7):645–66.

    Article  PubMed  CAS  Google Scholar 

  30. Loftsson T. Cyclodextrins in drug delivery. Expert Opin Drug Deliv. 2005;2(2):335–51.

    Article  PubMed  CAS  Google Scholar 

  31. Loftsson T, Brewster ME. Pharmaceutical applications of cyclodextrins. 1. Drug solubilization and stabilization. J Pharm Sci. 1996;85(10):1017–25.

    Article  PubMed  CAS  Google Scholar 

  32. Loftsson T, Brewster ME, Másson M. Role of cyclodextrins in improving oral drug delivery. Am J Drug Deliv. 2004;2(4):1–15.

    Article  Google Scholar 

  33. Mu X, Zhong Z. Preparation and properties of poly(vinyl alcohol)-stabilized liposomes. Int J Pharm. 2006;318(1–2):55–61.

    Article  PubMed  CAS  Google Scholar 

  34. Johnston MJ. Characterization of the drug retention and pharmacokinetic properties of liposomal nanoparticles containing dihydrosphingomyelin. Biochim Biophys Acta. 2007;1768(5):1121–7.

    Article  PubMed  MathSciNet  CAS  Google Scholar 

  35. Kreuter A. Liposomal pegylated doxorubicin versus low-dose recombinant interferon Alfa-2a in the treatment of advanced classic Kaposi's sarcoma; retrospective analysis of three German centers. Cancer Invest. 2005;23(8):653–9.

    Article  PubMed  CAS  Google Scholar 

  36. Dannenfelser RM. Development of clinical dosage forms for a poorly water soluble drug I: application of polyethylene glycolpolysorbate 80 solid dispersion carrier system. J Pharm Sci. 2004;93(5):1165–75.

    Article  PubMed  CAS  Google Scholar 

  37. Joshi HN. Bioavailability enhancement of a poorly water-soluble drug by solid dispersion in polyethylene glycol-polysorbate 80 mixture. Int J Pharm. 2004;269(1):251–8.

    Article  PubMed  CAS  Google Scholar 

  38. Karavas E. Investigation of the release mechanism of a sparingly water-soluble drug from solid dispersions in hydrophilic carriers based on physical state of drug, particle size distribution and drug-polymer interactions. Eur J Pharm Biopharm. 2007;66(3):334–47.

    Article  PubMed  CAS  Google Scholar 

  39. Overhoff KA. Solid dispersions of itraconazole and enteric polymers made by ultra-rapid freezing. Int J Pharm. 2007;336(1):122–32.

    Article  PubMed  CAS  Google Scholar 

  40. Serajuddin AT. Solid dispersion of poorly water-soluble drugs: early promises, subsequent problems, and recent breakthroughs. J Pharm Sci. 1999;88(10):1058–66.

    Article  PubMed  CAS  Google Scholar 

  41. Keck CM, Muller RH. Drug nanocrystals of poorly soluble drugs produced by high pressure homogenization. Eur J Pharm Biopharm. 2006;62:3–16.

    Article  PubMed  CAS  Google Scholar 

  42. Thassu D, Deleers M, Pathak Y. Nanoparticulate drug delivery systems. Boca Raton: CRC; 2008.

    Google Scholar 

  43. Shinde AJ. Solubilization of poorly soluble drugs: a review. Pharmaceutical Reviews Latest Reviews. 2007;5(6):1–13.

    Google Scholar 

  44. Rama Rao N, Prasanthi NL, Ramakrishna R, Babu Nageswararao K. Nanosuspensions: an emerging carrier for delivery of bioactive agents, The Pharma Review. New Delhi: KONGPOSH; 2008. p. 23–31.

    Google Scholar 

  45. Chaubal MV. Application of formulation technologies in lead candidate selection and optimization. Drug Discov Today. 2004;9(14):603–9.

    Article  PubMed  CAS  Google Scholar 

  46. Müller RH, Jacobs C, Kayer O. Nanosuspensions for the formulation of poorly soluble drugs. In: Nielloud F, Marti-Mestres G, editors. Pharmaceutical emulsion and suspension. New York: Marcel Dekker; 2000. p. 383–407.

    Google Scholar 

  47. Barrett RE. Nanosuspensions. Nature Reviews/Drug Discovery. 2004;3:785–96.

    Article  CAS  Google Scholar 

  48. Kipp JE, Wong JCT, Doty MJ, Rebbeck CL. Micro precipitation method for preparing submicron suspensions. US Patent 6,607,784 2003.

  49. Sarkari M, Brown J, Chen X, Swinnea S, Williams RO III, Johnston KP. Enhanced drug dissolution using evaporative precipitation into aqueous solution. Int J Pharm. 2002;243:17–31.

    Article  PubMed  CAS  Google Scholar 

  50. Chen X, Yong TJ, Sarkari M, Williams RO III, Johnston KP. Preparation of cyclosporine a nanoparticles by evaporative precipitation into aqueous solution. Int J Pharm. 2002;242:3–14.

    Article  PubMed  CAS  Google Scholar 

  51. Zili Z, Sfar S, Fessi H. Preparation and characterization of poly-ε-carprolactone nanoparticles containing griseofulvin. Int J Pharm. 2005;294:261–7.

    Article  PubMed  CAS  Google Scholar 

  52. Zhang X, Xia Q, Gu N. Preparation of all-trans retinoic acid nanosuspensions using a modified precipitation method. Drug Dev Ind Pharm. 2006;32:857–63.

    Article  PubMed  CAS  Google Scholar 

  53. Liversidge GG, Cundy KC, Bishop JF, Czekai DA. Surface modified drug nanoparticles. US Patent 5, 145, 684, 199.

  54. Jinno J-I, Kamada N, Miyake M, Yamada K, Mukai T, Odomi M, et al. Effect of particle size reduction on dissolution and oral absorption of a poorly water-soluble drug, cilostazol, in beagle dogs. J Control Release. 2006;111:56–64.

    Article  PubMed  CAS  Google Scholar 

  55. Merisko-Liversidge E, Liversidge GG, Cooper ER. Nanosizing: a formulation approach for poorly-water-soluble compounds. Eur J Pharm Sci. 2003;18:113–20.

    Article  PubMed  CAS  Google Scholar 

  56. Liversidge GG, Conzentino P. Drug particle size reduction for decreasing gastric irritancy and enhancing absorption of naproxen in rats. Int J Pharm. 1995;125:309–13.

    Article  CAS  Google Scholar 

  57. Rao YM, Kumar MP, Apte S. Formulation of nanosuspensions of albendazole for oral administration. Current Nanoscience. 2008;4(1):53–8.

    Article  ADS  Google Scholar 

  58. Kumar MP, Rao YM, Apte S. Improved bioavailability of albendazole following oral administration of nanosuspension in rats. Curr Nanosci. 2007;3:191–4.

    Article  ADS  CAS  Google Scholar 

  59. Kayser O, Olbrich C, Yardley V, Kiderlen AF, Croft SL. Formulation of amphotericin B as nanosuspension for oral administration. Int J Pharm. 2003;254:73–5.

    Article  PubMed  CAS  Google Scholar 

  60. Kayser O. Nanosuspensions for the formulation of aphidicolin to improve drug targeting effects against Leishmania infected macrophages. Int J Pharm. 2000;196:253–6.

    Article  PubMed  CAS  Google Scholar 

  61. Müller RH, Jacobs C, Kayser O. Nanosuspensions as particulate drug formulations in therapy rationale for development and what we can expect for the future. Adv Drug Deliv Rev. 2001;47:3–19.

    Article  PubMed  Google Scholar 

  62. Zhang D, Tan T, Gao L, Zhao W, Wang P. Preparation of azithromycin nanosuspensions by high pressure homogenization and its physicochemical characteristics studies. Drug Dev Ind Pharm. 2007;33:569–75.

    Article  PubMed  CAS  Google Scholar 

  63. Müller RH, Jacobs C. Production and characterization of a budesonide nanosuspension for pulmonary administration. Pharm Res. 2002;19:189–94.

    Article  PubMed  Google Scholar 

  64. Hernández-Trejo N, Kayser O, Steckel H, Müller RH. Characterization of nebulized bupravaquone nanosuspensions—effect of nebulization technology. J Drug Target. 2005;13:499–507.

    Article  PubMed  CAS  Google Scholar 

  65. Hanafy A, Spahn-Langguth H, Vergnault G, Grenier P, Grozdanis MT, Lenhardt T. Pharmacokinetic evaluation of oral fenofibrate nanosuspension and SLN in comparison to conventional suspensions of micronized drug. Adv Drug Del Rev. 2007;59:419–26.

    Article  CAS  Google Scholar 

  66. Kassem MA, Abdel Rahman AA, Ghorab MM, Ahmed MB, Khalil RM. Nanosuspension as an opthamic delivery system for certain glucocorticoid drugs. Int J Pharm. 2007;340:126–33.

    Article  PubMed  CAS  Google Scholar 

  67. Kocbek P, Baumgartner S, Kristl J. Preparation and evaluation of nanosuspensions for enhancing the dissolution of poorly soluble drug. Int J Pharm. 2006;312:179–86.

    Article  PubMed  CAS  Google Scholar 

  68. Rainbow B, Kipp J, Papadopoulos P, Wong J, Glosson J, Gass J, et al. Itraconazole IV nanosuspension enhances efficacy through altered pharmacokinetic in the rat. Int J Pharm. 2007;339:251–60.

    Article  CAS  Google Scholar 

  69. Trotta M, Gallarete M, Pattarino F, Morel S. Emulsions containing partially water-miscible solvents for the preparation of dry nanosuspensions. J Control Release. 2001;76:119–28.

    Article  PubMed  CAS  Google Scholar 

  70. Hecq J, Deleers M, Fanara D, Vranckx H, Amighi K. Preparation and characterization of nanocrystals for solubility and dissolution rate enhancement of nifedipine. Int J Pharm. 2005;299:167–77.

    Article  PubMed  CAS  Google Scholar 

  71. Chen JY, Yang LX, Zhao LX, Xu BH. Preparation of oleanolic acid nanosuspension. Chin Pharm J. 2006;41:924–7.

    CAS  Google Scholar 

  72. Möschwitzer J, Achleitner G, Pomper H, Müller RH. Development of an intravenously injectable chemically stable aqueous omeprazole formulation using nanosuspension technology. Eur J Pharm Biopharm. 2004;58:615–9.

    Article  PubMed  CAS  Google Scholar 

  73. Langguth P, Hanafy A, Frenzel D, Grenier P, Nhamias A, Ohlig T, et al. Nanosuspension formulations for low-soluble drugs: pharmacokinetic evaluation using spironolactone as model compound. Drug Dev Ind Pharm. 2005;31:319–29.

    PubMed  CAS  Google Scholar 

  74. Keck CM, Müller RH. Drug nanocrystals of poorly soluble drugs produced by high pressure homoginisation. Eur J Pharm Biopharm. 2006;62:3–16.

    Article  PubMed  CAS  Google Scholar 

  75. Trotta M, Gallarate M, Carlotti ME, Morel S. Preparation of griseofulvin nanoparticles from water-dilutable microemulsions. Int J Pharm. 2003;254:235–42.

    Article  PubMed  CAS  Google Scholar 

  76. She Z-Y, Ke X, Ping Q-N, Xu B-H, Chen L-L. Preparation of breviscapine nanosuspension and its pharmacokinetic behavior in rats. Chin J Nat Med. 2007;5:50–5.

    CAS  Google Scholar 

  77. Itoh K, Pongpeerapat A, Tozuka Y, Oguchi T, Yamamoto K. Nanoparticle formation of poorly water soluble drugs from ternary ground mixtures with PVP and SDS. Chem Pharm Bull. 2003;51:171–4.

    Article  PubMed  CAS  Google Scholar 

  78. Yonemochi E, Kitahara S, Maeda S, Yamamura S, Oguchi T, Yamamoto K. Physicochemical properties of amorphous clarithromycin obtained by grinding and spray drying. Eur J Pharm Sci. 1999;7:331–8.

    Article  PubMed  CAS  Google Scholar 

  79. Mura P, Cirri M, Faucci MT, Ginès-Dorado JM, Bettinetti GP. Investigation of the effects of grinding and co-grinding on physicochemical properties of glisentide. J Pharm Biomed Anal. 2002;30:227–37.

    Article  PubMed  CAS  Google Scholar 

  80. Watanabe T, Ohno I, Wakiyama N, Kusai A, Senna M. Stabilization of amorphous indomethacin by co-grinding in a ternary mixture. Int J Pharm. 2002;241:103–11.

    Article  PubMed  CAS  Google Scholar 

  81. Mura P, Faucci MT, Bettinetti GP. The influence of polyvinylpyrrolidone onnaproxen complexation with hydroxypropyl- β-cyclodextrin. Eur J Pharm Sci. 2001;13:187–94.

    Article  PubMed  CAS  Google Scholar 

  82. Otsuka M, Matsuda Y. Effect of co-grinding with various kinds of surfactants on the dissolution behavior of phenytoin. J Pharm Sci. 1995;84:1434–7.

    Article  PubMed  CAS  Google Scholar 

  83. Wongmekiat A, Tozuka Y, Oguchi T, Yamamoto K. Formation of fine drug particles by co-grinding with cyclodextrin. I. the use of β-cyclodextrin anhydrate and hydrate. Pharm Res. 2002;19:1867–72.

    Article  PubMed  CAS  Google Scholar 

  84. Patravale VB, Date AA, Kulkarni RM. Nanosuspensions: a promising drug delivery strategy. J Pharm Pharcol. 2004;56:827–40.

    Article  CAS  Google Scholar 

  85. Muller RH, Bohm BHL, Grau J. Nanosuspensions: a formulation approach for poorly soluble and poorly bioavailable drugs. In: Wise D, editor. Handbook of pharmaceutical controlled release technology. New York: Marcel Dekker; 2000. p. 345–57.

    Google Scholar 

  86. Muthu MS, Singh S. Poly (D, L-Lactide) nanosuspensions of risperidone for parenteral delivery: formulation and in-vitro evaluation. Current Drug Delivery. 2009;6(1):62–8.

    Article  PubMed  CAS  Google Scholar 

  87. Muller RH, Jacobs C, Kayser O. Nanosuspensions as particulate drug formulations in therapy rationale for development and what we can expect for the future. Adv Drug Deliv Rev. 2001;47:3–19.

    Article  PubMed  CAS  Google Scholar 

  88. Montasser HF, Coleman AW. Atomic force microscopy imaging of novel type of polymeric colloidal nanostructures. Eur J Pharm Biopharm. 2002;54:281–4.

    Article  PubMed  CAS  Google Scholar 

  89. Bond L, Allen S, Davies MC, Roberts CJ, Shivji AP, Tendler SJB, et al. Differential scanning calorimetry and scanning thermal microscopy analysis of pharmaceutical materials. Int J Pharm. 2002;243:71–82.

    Article  PubMed  CAS  Google Scholar 

  90. Scholer N, Krause K, Kayser O, Muller RH, Borner K, Hahn H, et al. Atovaquone nanosuspensions show excellent therapeutic effect in a new murine model of reactivated toxoplasmosis. Antimicrob Agents Chemother. 2001;45:1771–9.

    Article  PubMed  CAS  Google Scholar 

  91. Waterbeemd H, Lennernäs H, Artursson P. Drug bioavailability: estimation of solubility, permeability, absorption and bioavailability. Weinheim: Wiley; 2003. ISBN 3-527-30438-X.

    Google Scholar 

  92. Kesisoglou F, Panmai S, Wu Y. Nanosizing-oral formulation development and biopharmaceutical evaluation. Adv Drug Deliv Rev. 2007;59:631–44.

    Article  PubMed  CAS  Google Scholar 

  93. Peters K, Leitzke S, Diederichs JE, Borner K, Hahn H, Müller RH, et al. Preparation of a clofazamine nanosuspension for intravenous use and evaluation of its therapeutic efficacy in murine Mycobacterium avium infection. J Antimicrob Chemother. 2000;45:77–83.

    Article  PubMed  CAS  Google Scholar 

  94. Remon JP, Vergote GJ, Vervaet C, Driessche I, Hoste S, Smedt S, et al. An oral controlled release matrix pellet formulation containing nanocrystalline ketoprofen. Int J Pharm. 2001;219:81–7.

    Article  PubMed  Google Scholar 

  95. Looareesuwan S, Chulay JD, Canfield CJ, Hutchinson DB. Atovaquone and proguanil hydrochloride followed by primaquine for treatment of Plasmodium vivax malaria in Thailand. Trans R Soc Trop Med Hyg. 1999;93:637–40.

    Article  PubMed  CAS  Google Scholar 

  96. Schöler N, Krause K, Kayser O, Müller RH, Borner K, Hahn H, et al. Atovaquone nanosuspensions show excellent therapeutic effect in a new murine model of reactivated toxoplasmosis. Antimicrob Agents Chemother. 2001;45:1771–9.

    Article  PubMed  Google Scholar 

  97. Pignatello R, Bucolo C, Ferrara P, Maltese A, Pvleo A, Puglisi G. Eudragit RS100®nanosuspensions for the ophthalmic controlled delivery of ibuprofen. Eur J Pharm Sci. 2002;16:53–61.

    Article  PubMed  CAS  Google Scholar 

  98. Kayser O. A new approach for targeting to Cryptosporidium parvum using mucoadhesive nanosuspensions: research and applications. Int J Pharm. 2001;214:83–5.

    Article  PubMed  CAS  Google Scholar 

  99. Kohno S, Otsubo T, Tanaka E, Maruyama K, Hara K. Amphotericin B encapsulated in polyethylene glycol immunoliposomes for infectious diseases. Adv Drug Del Rev. 1997;24:325–9.

    Article  CAS  Google Scholar 

  100. Muller RH, Keck CM. Challenges and solutions for the delivery of biotech drugs—a review of drug nanocrystal technology and lipid nanoparticles. J Biotechnol. 2004;113:151–70.

    Article  PubMed  CAS  Google Scholar 

  101. Goppert TM, Muller RH. Adsorption kinetics of plasma proteins on solid lipid nanoparticles for drug targeting. Int J Pharm. 2005;302:172–86.

    Article  PubMed  CAS  Google Scholar 

  102. Allen TM. Liposomes: opportunities in drug delivery. Drugs. 1997;54:8–14.

    Article  PubMed  CAS  Google Scholar 

  103. Chen X, Lo CY-L, Sarkari M, Williams RO III, Johnston KP. Ketoprofen nanoparticle gels formed by evaporative precipitation into aqueous solution. AIChE J. 2006;52:2428–35.

    Article  CAS  Google Scholar 

  104. Jignyasha A. Raval nanosuspensions as particulate drug delivery systems. Pharm Rev. 2006;4(6):1–18.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Ravichandran.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ravichandran, R. Nanotechnology-Based Drug Delivery Systems. Nanobiotechnol 5, 17–33 (2009). https://doi.org/10.1007/s12030-009-9028-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12030-009-9028-2

Keywords

Navigation