Skip to main content
Log in

Ultrasonic Processing of Single-Walled Carbon Nanotube–Glucose Oxidase Conjugates: Interrelation of Bioactivity and Structure

  • Published:
NanoBiotechnology

Abstract

Supramolecular conjugates of single-walled carbon nanotubes and glucose oxidase were prepared in aqueous solution using ultrasonication processing and then isolated by high-speed centrifugation. The conjugates of the single-walled carbon nanotubes and the pristine glucose oxidase, serving as control, were investigated for their enzymatic bioactivity. In addition, the effect of the extent of ultrasonication was studied. The conjugates were also characterized by UV–VIS and circular dichroism spectroscopy as well as by high-resolution transmission electron microscopic and thermogravimetric analysis. Ultrasonication is shown to reduce catalytic activity by ca. 30% (10 min) and that prolonged ultrasonication (up to 60 min) further reduces V max by 40%. However, most of this decrease arises from ultrasonication itself. The presence of carbon nanotubes (CNTs), while not eliminating changes in catalytic activity, mitigates the magnitude of these changes and is effectively de-bundled by the presence of the surfactant properties of the protein. The enzymatic activity and conformation were found to be predominantly retained after the supramolecular conjugation process assisted by ultrasonication in the presence of the CNTs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Loiseau A, et al. Understanding carbon nanotubes from basics to applications. Lecture notes in physics. Heidelberg: Springer; 2006.

    Google Scholar 

  2. Geckeler KE, Rosenberg E. Functional nanomaterials. Valencia: American Scientific; 2006.

    Google Scholar 

  3. Dodziuk H. Cyclodextrins and their complexes. Weinheim: Wiley-VCH; 2006.

    Book  Google Scholar 

  4. Steed JW, Turner DR, Wallace KJ. Core concepts in supramolecular chemistry and nanochemistry. West Sussex: Wiley; 2007.

    Google Scholar 

  5. Kumar CSSR. Nanomaterials for biosensors. Nanotechnologies for the life sciences. Weinheim: Wiley-VCH; 2007.

    Google Scholar 

  6. Kim D, Nepal D, Geckeler KE. Individualization of single-walled carbon nanotubes: is the solvent important? Small. 2005;1(11):1117–24. doi:10.1002/smll.200500167.

    Article  PubMed  CAS  Google Scholar 

  7. O'Connell MJ, et al. Band gap fluorescence from individual single-walled carbon nanotubes. Science. 2002;297(5581):593–6. doi:10.1126/science.1072631.

    Article  PubMed  ADS  Google Scholar 

  8. Kovtyukhova NI, et al. Individual single-walled nanotubes and hydrogels made by oxidative exfoliation of carbon nanotube ropes. J Am Chem Soc. 2003;125(32):9761–9. doi:10.1021/ja0344516.

    Article  PubMed  CAS  Google Scholar 

  9. Kumar CSSR. Biofunctionalization of nanomaterials. In: Kumar CSSR, editor. Nanotechnologies for the life sciences. Weinheim: Wiley-VCH; 2006.

    Google Scholar 

  10. Guiseppi-Elie A, Lei C, Baughman RH. Direct electron transfer of glucose oxidase on carbon nanotubes. Nanotechnology. 2002;13(5):559–64. doi:10.1088/0957-4484/13/5/303.

    Article  ADS  CAS  Google Scholar 

  11. Patolsky F, et al. C60-mediated bioelectrocatalyzed oxidation of glucose with glucose oxidase. J Electroanal Chem. 1998;454(1–2):9–13. doi:10.1016/S0022-0728(98)00257-5.

    Article  CAS  Google Scholar 

  12. Davis JJ, Coleman KS, Azamian BR, Baqshaw CB, Green ML. Chemical and biochemical sensing with modified single walled carbon nanotubes. Chem Eur J. 2003;9(16):3732–9. doi:10.1002/chem.200304872.

    Article  CAS  Google Scholar 

  13. Liang W, Zhuobin Y. Direct electrochemistry of glucose oxidase at a gold electrode modified with single-wall carbon nanotubes. Sensors. 2003;3(3):544–54. doi:10.3390/s31200544.

    Article  Google Scholar 

  14. Cai C, Chen J. Direct electron transfer of glucose oxidase promoted by carbon nanotubes. Anal Biochem. 2004;332(1):75–83. doi:10.1016/j.ab.2004.05.057.

    Article  PubMed  CAS  Google Scholar 

  15. Liu Y, et al. The direct electron transfer of glucose oxidase and glucose biosensor based on carbon nanotubes/chitosan matrix. Biosens Bioelectron. 2005;21(6):984–8. doi:10.1016/j.bios.2005.03.003.

    Article  PubMed  CAS  Google Scholar 

  16. Geckeler KE. Advanced macromolecular and supramolecular materials and processes. New York: Kluwer; 2003.

    Google Scholar 

  17. Mason TJ, Lorimer JP. Applied sonochemistry: uses of power ultrasound in chemistry and processing. Weinheim: Wiley-VCH; 2002.

    Google Scholar 

  18. Dhriti Nepal KG. pH-sensitive dispersion and debundling of single-walled carbon nanotubes: lysozyme as a tool. Small. 2006;2(3):406–12. doi:10.1002/smll.200500351.

    Article  PubMed  CAS  Google Scholar 

  19. Dhriti Nepal KG. Proteins and carbon nanotubes: close encounter in water. Small. 2007;3(7):1259–65. doi:10.1002/smll.200600511.

    Article  PubMed  CAS  Google Scholar 

  20. Bergmeyer HU, Gawehn K, Grassl M. Methods of enzymatic analysis. New York: Academic; 1974. p. 457–458.

    Google Scholar 

  21. Yang JT, Wu CS, Martinez HM. Calculation of protein conformation from circular dichroism. Methods Enzymol. 1986;130:208–269.

    Article  PubMed  CAS  Google Scholar 

  22. Kim JB, Premkumar T, Giani O, Robin J-J, Schue F, Geckeler KE. A mechanochemical approach to nanocomposites using single-wall carbon nanotubes and polyL-lysine. Macromol Rapid Commun. 2007;28(6):767–71. doi:10.1002/marc.200600802.

    Article  CAS  Google Scholar 

  23. Denslow ND, Wingfield PT, Rose K. Overview of the characterization of recombinant proteins. Current Protocols in Protein Science 1994;7.1.1–7.1.13

  24. Bateman RC Jr, Evans JA. Using the glucose oxidase/peroxidase system in enzyme kinetics. J Chem Educ. 1995;72(12):A240–1.

    Article  CAS  Google Scholar 

  25. Simpson C, et al. Isolation, purification and characterization of a novel glucose oxidase from Penicillium sp. CBS 120262 optimally active at neutral pH. Protein Expr Purif. 2007;51(2):260–6. doi:10.1016/j.pep.2006.09.013.

    Article  PubMed  CAS  Google Scholar 

  26. Shah S, Solanki K, Gupta M. Enhancement of lipase activity in non-aqueous media upon immobilization on multi-walled carbon nanotubes. Chemistry Central Journal. 2007;1(1):30. doi:10.1186/1752-153X-1-30.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the US Department of Defense (DoDPRMRP) grant PR023081/DAMD17-03-1-0172 and by the Consortium of the Clemson University Center for Bioelectronics, Biosensors and Biochips. KEG thanks the Clemson C3B for a Visiting Professorship and SHC for a transient graduate studentship as well as support from the Dasan Global Explorer Program (GIST, South Korea).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony Guiseppi-Elie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guiseppi-Elie, A., Choi, SH., Geckeler, K.E. et al. Ultrasonic Processing of Single-Walled Carbon Nanotube–Glucose Oxidase Conjugates: Interrelation of Bioactivity and Structure. Nanobiotechnol 4, 9–17 (2008). https://doi.org/10.1007/s12030-009-9026-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12030-009-9026-4

Keywords

Navigation