Skip to main content

Nano-Raman Spectroscopy: Surface Plasmon Emission, Field Gradients, and Fundamentally Near Field Propagation Effects

Abstract

Nano-Raman spectra differ from far-field Raman spectra. The differences result from a strong electric field gradient near the metal tip, propagation, and polarization, but the dependence upon probe-sample distance can only be explained by the inclusion of surface plasmons and the near-field, non-propagating terms of the dipole emission. A simple model based upon these components accurately describes distance-dependent data measured with a near-field scanning optical microscope. Our essentially near-field model will apply generally to Raman spectroscopy near a nanoscale conductor.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Mansuripur M, Li L. What in the world are surface plasmons. Optics Photonics News. 1997;8:50–5. May.

    ADS  CAS  Google Scholar 

  2. Milner RG, Richards D. The role of tip plasmons in near-field Raman microscopy. J Microscopy. 2001;202(Pt 1):66–71.

    Article  CAS  MathSciNet  Google Scholar 

  3. Moody RL, Vo-Dinh T, Fletcher WH. Investigation of experimental parameters for surface-enhanced Raman scattering (SERS) using silver-coated microsphere substrates. Appl Spectrosc. 1987;41(6):966–70.

    Article  ADS  CAS  Google Scholar 

  4. Baker GA, Moore DS. Source, “Progress in plasmonic engineering of surface-enhanced Raman-scattering substrates toward ultra-trace analysis”. Anal Bioanal. Chem 2005;382(8):1751–70.

    PubMed  Article  CAS  Google Scholar 

  5. Xu H, Wang X-H, Persson MP, Xu HQ, Kall M, Johansson P. Unified treatment of fluorescence and Raman scattering processes near metal surfaces. Phys Rev Lett. 2004;93(24):243002–1–4.

    Article  ADS  Google Scholar 

  6. Ayars E, Hallen HD, Jahncke CL. Electric field gradient effects in Raman spectroscopy. Phys Rev Lett. 2000;85(19):4180–3.

    PubMed  Article  ADS  CAS  Google Scholar 

  7. Hallen HD, Jahncke CL. The electric field at the apex of a near-field probe: implications for nanoRaman spectroscopy. J Raman Spectroscopy. 2003;34(9):655–62.

    Article  ADS  CAS  Google Scholar 

  8. Jahncke CL, Ayars EJ, Hallen HD. The effects of probe boundary conditions and propagation on nano-Raman spectroscopy. J Microsc. 2003;210(Pt 3):252–4.

    PubMed  MathSciNet  Google Scholar 

  9. Jackson JB, Westcott SL, Hirsch LR, West JL, Halas NJ. Controlling the surface enhanced Raman effect via the nanoshell geometry. Appl Phys Lett. 2003;82(2):257–9.

    Article  ADS  CAS  Google Scholar 

  10. Poitras CA, Lipson M, Du H, Hahn MA, Krauss TD. Photoluminesce enhancement of colloidal quantum dots embedded in a monolithic cavity. Appl Phys Lett. 2003;82(23):4032–4.

    Article  ADS  CAS  Google Scholar 

  11. Bethe HA. Theory of diffraction by small holes. Phys Rev. 1944;66:163–82.

    MATH  Article  ADS  MathSciNet  Google Scholar 

  12. Bouwkamp CJ. On Bethe’s theory of diffraction by small holes. Philips Res Rep. 1950;5:321.

    MathSciNet  Google Scholar 

  13. Betzig E, Chichester RJ. Single molecules observed by near-field scanning optical microscopy. Science 1993;262:1422–5.

    PubMed  Article  ADS  CAS  Google Scholar 

  14. McDaniel EB, McClain SC, Hsu JWP. Nanometer scale polarimetry studies using a near-field scanning optical microscope. Appl Opt. 1998;37:84–92.

    PubMed  Article  ADS  CAS  Google Scholar 

  15. Ambrose WP, Goodwin PM, Martin JC, Keller RA. Alterations of single molecule fluorescence lifetimes in near-field optical microscopy. Science 1994;265:364–7.

    PubMed  Article  ADS  CAS  Google Scholar 

  16. Bian RX, Dunn RC, Xie XS, Leung PT. Single molecule emission characteristics in near-field microscopy. Phys Rev Lett. 1995;75(26):4772–5.

    PubMed  Article  ADS  CAS  Google Scholar 

  17. Ford GW, Weber WH. Electromagnetic interactions of molecules with metal surfaces. Phys Reports. 1984;113(4):195–287.

    Article  ADS  CAS  Google Scholar 

  18. Hellen EH, Axelrod D. Fluorescence emission at dielectric and metal-film interfaces. J Opt Soc Am B. 1987;4(3):337–50.

    Article  ADS  CAS  Google Scholar 

  19. Lukosz W, Kunz RE. Light emission by magnetic and electric dipoles close to plane interface I Total radiated power. J Opt Soc Am. 1977;67(12):1607.

    Article  ADS  Google Scholar 

  20. Weber WH, Eagan CF. Energy transfer from en excited dye molecule to the surface plasmon in an adjacent metal. Opt Lett. 1979;4(8):236–8.

    Article  ADS  CAS  Google Scholar 

  21. Homola J, Yee SS, Gauglitz G. Surface plasmon resonance sensors: review. Sens Actuators, B. 1999;54:3–15.

    Article  Google Scholar 

  22. Otto A. Z Phys. 1968;216:398.

    Article  ADS  CAS  Google Scholar 

  23. Ayars E, Hallen HD. Surface enhancement in near-field Raman spectroscopy. Appl Phys Lett. 2000;76(26):3911–3.

    Article  ADS  CAS  Google Scholar 

  24. Hoffmann P, Dutoit B, Salathé R-P. Comparison of mechanically drawn and protection layer chemically etched optical fiber tips. Ultramicroscopy 1995;61:165–70.

    Article  CAS  Google Scholar 

  25. Betzig E, Finn PL, Weiner JS. Combined shear force and near-field scanning optical microscopy. Appl Phys Lett. 1992;60:2484–6.

    Article  ADS  CAS  Google Scholar 

  26. Toledo-Crow R, Yang PC, Chen Y, Vaez-Iravani M. Near-field differential scanning optical microscope with atomic force regulation. Appl Phys Lett. 1992;60:2957.

    Article  ADS  CAS  Google Scholar 

  27. Karrai K, Grober RD. Piezoelectric tip-sample distance control for near-field optical microscopes. Appl Phys Lett. 1995;66:1842.

    Article  ADS  CAS  Google Scholar 

  28. Jahncke CL, Hallen HD. A versatile, stable scanning proximal probe microscope. Rev Scient Instr. 1997;68:1759.

    Article  ADS  CAS  Google Scholar 

  29. Heald M, Marion J. Classical electromagnetic radiation. 3rd ed. Pacific Grove: Brooks/Cole; 1995.

    Google Scholar 

  30. Guenther RD. Modern optics. New York: Wiley; 1990.

    Google Scholar 

  31. Yakobson BI, Paesler MA. Tip optics for illumination NSOM: extended zone approach. Ultramicroscopy 1995;57:204.

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This material is based upon work supported by the National Science Foundation under Grant Nos. DMR-9975543 and DMII-0210058. We acknowledge technical discussions with Catherine Jahncke and Eric Ayars.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. D. Hallen.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hallen, H.D. Nano-Raman Spectroscopy: Surface Plasmon Emission, Field Gradients, and Fundamentally Near Field Propagation Effects. Nanobiotechnol 3, 197–202 (2007). https://doi.org/10.1007/s12030-008-9013-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12030-008-9013-1

Keywords

  • nano-Raman spectroscopy
  • near-field scanning optical microscopy
  • electric field gradients
  • surface plasmon emission
  • radially polarized Fresnel reflection