Skip to main content

Evaluation of Immunotargeted Gold Nanoshells as Rapid Diagnostic Imaging Agents for HER2-Overexpressing Breast Cancer Cells: A Time-based Analysis


Biomedical nanotechnology offers superior potential for diagnostic imaging of malignancy at the microscopic level. In addition to current research focused on dual-imaging and therapeutic applications in vivo, these novel particles may also prove useful for obtaining immediate diagnostic results in vitro at the patient bedside. However, translating the use of nanoparticles for cancer detection to point-of-care applications requires that conditions be optimized such that minimal time is needed for diagnostic results to become available. Thus far, no reports have been published on minimizing the time needed to achieve acceptable optical contrast of cancer cells incubated with nanoparticles. In this study, we demonstrate the use of gold nanoshells targeted to anti-HER2 antibodies that produce sufficient optical contrast with HER2-overexpressing SK-BR-3 breast cancer cells in only 5 min. This work validates the proof of concept that nanoshells targeted to extracellular biomarkers can be used to enhance cancer diagnostic imaging for use in point-of-care applications.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. Loo C, Lowery A, Halas N, West J, Drezek R. Nano Lett 2005;5(4):709–11.

    PubMed  Article  ADS  CAS  Google Scholar 

  2. Loo C, Hirsch L, Lee M-H, Chang E, West J, Halas N, Drezek R. Optics Lett 2005;30:1012–4.

    Article  ADS  CAS  Google Scholar 

  3. Lowery A, Gobin A, et al. Int J Nanomed 2006;1:149–54.

    Article  CAS  Google Scholar 

  4. Gobin AM, Lee MH, Halas NJ, James WD, Drezek RA, West JL. Nano Lett 2007;7:1929–34.

    PubMed  Article  ADS  CAS  Google Scholar 

  5. Sokolov K, Follen M, Aaron J, Pavlova I, Malpica A, Lotan R, et al. Cancer Res 2003;63:1999–2004.

    PubMed  CAS  Google Scholar 

  6. El-Sayed IH, Huang X, El-Sayed MA. Nano Lett 2005;5(5):829–34.

    PubMed  Article  ADS  CAS  Google Scholar 

  7. Sun J, Zhu MQ, Fu K, Lewinski N, Drezek R. Int J Nanomed 2007;2(2):235–40.

    CAS  Google Scholar 

  8. Gao X, Cui Y, Levenson RM, Chung LW, Nie S. Nat Biotechnol 2004;22(8):969–76.

    PubMed  Article  CAS  Google Scholar 

  9. Cao L, et al. J Am Chem Soc 2007;129:11318–9.

    PubMed  Article  CAS  Google Scholar 

  10. Huang X, El-Sayed IH, Qian W, El-Sayed MA. J Am Chem Soc 2006;128:2115–20.

    PubMed  Article  CAS  Google Scholar 

  11. Durr NJ, Larson T, Smith DK, Korgel BA, Sokolov K, Ben-Yakar A. Nano Lett 2007;7:941–5.

    PubMed  Article  ADS  CAS  Google Scholar 

  12. Yu C, Nakshatri H, Irudayaraj J. Nano Lett 2007;7(8):2300–6.

    PubMed  Article  ADS  CAS  Google Scholar 

  13. Sukhanova A, Devy J, Venteo L, Kaplan H, et al. Anal Biochem 2004;324:60–7.

    PubMed  Article  CAS  Google Scholar 

  14. Zajac A, Song D, Qian W, Zhukov T. Colloids Surf B Biointerfaces 2007;58:309–14.

    PubMed  Article  CAS  Google Scholar 

  15. Weigum SE, Floriano PN, Christodoulides N, McDevitt JT. Lab Chip 2007;7(8):995–1003.

    PubMed  Article  CAS  Google Scholar 

  16. Culha M, Stokes DL, Griffin GD, Vo-Dinh T. JBO 2004;9(3):439–43.

    ADS  CAS  Google Scholar 

  17. National Comprehensive Cancer Network. Breast cancer treatment guidelines for patients. Version IX. 2007.

  18. Mojica CM, Bastani R, Boscardin WJ, Ponce NA. Cancer Control 2007;14(2):176–82.

    PubMed  Google Scholar 

  19. Guthrie TH. Breast J 1995;1(6):376–9.

    Article  Google Scholar 

  20. Klimberg VS, Harms S, Korourian S. Surg Oncol 1999;8:77–84.

    PubMed  Article  CAS  Google Scholar 

  21. Fisher B, Anderson S, Bryant J, Margolese RG, Deutsch M, Fisher ER, Jeong JH, Wolmark N. NEJM 2002;347:1233–41.

    PubMed  Article  Google Scholar 

  22. Hirsch LR, Halas NJ, West JL. Methods Mol Biol 2005;303:101–11.

    PubMed  CAS  Google Scholar 

  23. Stöber W, Fink A, et al. J Colloid Interface Sci 1968;26:62–9.

    Article  Google Scholar 

  24. Duff DG, Baiker A, Edwards PP. Langmuir 1993;9:2301–9.

    Article  CAS  Google Scholar 

  25. Hayes DF, Walker TM, et al. Int J Oncol 2002;21(5):1111–7.

    PubMed  CAS  Google Scholar 

  26. Kornilova ES, Taverna D, et al. Oncogene 1992;7(3):511–9.

    PubMed  CAS  Google Scholar 

Download references


We thank Vengadesan Nammalvar and Adrien Wang for expert technical assistance on nanoshell fabrication. We also thank Nastassja Lewinski for SEM imaging and Christine Wogan for editing assistance. This work was supported by a Department of Defense Congressionally Directed Breast Cancer Research Program Era of Hope Scholar Award to Rebekah Drezek and Tse-Kuan Yu, the Center for Biological and Environmental Nanotechnology (EEC-0118007 and EEC-0647452), the Beckman Foundation, and the John and Ann Doerr Fund for Computational Biomedicine.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Rebekah A. Drezek.

Additional information

T.-K. Yu and R.A. Drezek contributed equally to this work.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bickford, L.R., Chang, J., Fu, K. et al. Evaluation of Immunotargeted Gold Nanoshells as Rapid Diagnostic Imaging Agents for HER2-Overexpressing Breast Cancer Cells: A Time-based Analysis. Nanobiotechnol 4, 1–8 (2008).

Download citation

  • Published:

  • Issue Date:

  • DOI:


  • nanoshells
  • point-of-care diagnostics
  • optical imaging
  • cancer diagnosis