Skip to main content

Advertisement

Log in

Cancer Stem Cells in Colorectal Cancer: Implications for Targeted Immunotherapies

  • Review
  • Published:
Journal of Gastrointestinal Cancer Aims and scope Submit manuscript

Abstract

Purpose

Colorectal cancers are composed of heterogeneous cell populations in the concepts of genetic and functional degrees that among them cancer stem cells are identified with their self-renewal and stemness capability mediating primary tumorigenesis, metastasize, therapeutic resistance, and tumor recurrence. Therefore, understanding the key mechanisms of stemness in colorectal cancer stem cells (CRCSCs) provides opportunities to discover new treatments or improve existing therapeutic regimens.

Methods

We review the biological significance of stemness and the results of potential CRCSC-based targeted immunotherapies. Then, we pointed out the barriers to targeting CRCSCs in vivo and highlight new strategies based on synthetic and biogenic nanocarriers for the development of future anti-CRCSC trials.

Results

The CSCs’ surface markers, antigens, neoantigens, and signaling pathways supportive CRCSCs or immune cells that are interacted with CRCSCs could be targeted by immune monotherapy or in formulation with developed nanocarriers to overcome the resistant mechanisms in immune evader CRCSCs.

Conclusion

Identification molecular and cellular cues supporting stemness in CRCSCs and their targeting by nanoimmunotherpy can improve the efficacy of existed therapies or explore novel therapeutic options in future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Availability of Data and Materials

Not applicable.

Abbreviations

ACT:

Improve adoptive cell therapy

CAR:

Chimeric antigen receptor

CRC:

Colorectal cancer

CRCSCs:

Colorectal cancer stem cells

EMT:

Epithelial-mesenchymal transition

ICD:

Immunogenic cell death

iPSC:

Induced pluripotent stem cell

mAb:

Monoclonal antibody

MDSCs:

Myeloid-derived suppressor cells

NP:

Nanoparticle

PD-1:

Programmed cell death 1

TAA:

Tumor-associated antigen

TIL:

Tumor infiltration lymphocyte

TMB:

Tumor mutational burden

TME:

Tumor microenvironment

Treg:

Regulatory T cell

References

  1. Mattiuzzi C, Sanchis-Gomar F, Lippi G. Concise update on colorectal cancer epidemiology. Ann Transl Med. 2019;7(21).

  2. Lotfi-Attari J, Pilehvar-Soltanahmadi Y, Dadashpour M, Alipour S, Farajzadeh R, Javidfar S, et al. Co-delivery of curcumin and chrysin by polymeric nanoparticles inhibit synergistically growth and hTERT gene expression in human colorectal cancer cells. Nutr Cancer. 2017;69(8):1290–9.

    Article  CAS  PubMed  Google Scholar 

  3. O’Brien CA, Pollett A, Gallinger S, Dick JE. A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature. 2007;445(7123):106–10.

    Article  PubMed  Google Scholar 

  4. Todaro M, Gaggianesi M, Catalano V, Benfante A, Iovino F, Biffoni M, et al. CD44v6 is a marker of constitutive and reprogrammed cancer stem cells driving colon cancer metastasis. Cell Stem Cell. 2014;14(3):342–56.

    Article  CAS  PubMed  Google Scholar 

  5. Miao Z, Zhao X, Liu X. Hypoxia induced β-catenin lactylation promotes the cell proliferation and stemness of colorectal cancer through the wnt signaling pathway. Exp Cell Res. 2022;113439.

  6. Hu P-S, Li T, Lin J-F, Qiu M-Z, Wang D-S, Liu Z-X, et al. VDR–SOX2 signaling promotes colorectal cancer stemness and malignancy in an acidic microenvironment. Signal Transduct Target Ther. 2020;5(1):1–13.

    Google Scholar 

  7. Zeuner A, Todaro M, Stassi G, De Maria R. Colorectal cancer stem cells: from the crypt to the clinic. Cell Stem Cell. 2014;15(6):692–705.

    Article  CAS  PubMed  Google Scholar 

  8. Merlos-Suárez A, Barriga FM, Jung P, Iglesias M, Céspedes MV, Rossell D, et al. The intestinal stem cell signature identifies colorectal cancer stem cells and predicts disease relapse. Cell Stem Cell. 2011;8(5):511–24.

    Article  PubMed  Google Scholar 

  9. Omear H. Novel SNPs of TNF-a and IL-6 that Regulate Serum Level in Obese Patients. J Biomed Biochem. 2023;2(1):7–20. https://doi.org/10.57238/jbb.2023.6398.1025.

    Article  Google Scholar 

  10. Dianat-Moghadam H, Heidarifard M, Jahanban-Esfahlan R, Panahi Y, Hamishehkar H, Pouremamali F, et al. Cancer stem cells-emanated therapy resistance: implications for liposomal drug delivery systems. J Control Release. 2018;288:62–83.

    Article  CAS  PubMed  Google Scholar 

  11. Desai A, Yan Y, Gerson SL. Concise reviews: cancer stem cell targeted therapies: toward clinical success. Stem Cells Transl Med. 2019;8(1):75–81.

    Article  PubMed  Google Scholar 

  12. Suo X, Zhang J, Zhang Y, Liang X-J, Zhang J, Liu D. A nano-based thermotherapy for cancer stem cell-targeted therapy. J Mater Chem B. 2020;8(18):3985–4001.

    Article  CAS  PubMed  Google Scholar 

  13. Ricci-Vitiani L, Lombardi DG, Pilozzi E, Biffoni M, Todaro M, Peschle C, et al. Identification and expansion of human colon-cancer-initiating cells. Nature. 2007;445(7123):111–5.

    Article  CAS  PubMed  Google Scholar 

  14. Cheng C, Yaffe MB, Sharp PA. A positive feedback loop couples Ras activation and CD44 alternative splicing. Genes Dev. 2006;20(13):1715–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Pang R, Law WL, Chu AC, Poon JT, Lam CS, Chow AK, et al. A subpopulation of CD26+ cancer stem cells with metastatic capacity in human colorectal cancer. Cell Stem Cell. 2010;6(6):603–15.

    Article  CAS  PubMed  Google Scholar 

  16. Schepers AG, Snippert HJ, Stange DE, van den Born M, van Es JH, van de Wetering M, et al. Lineage tracing reveals Lgr5+ stem cell activity in mouse intestinal adenomas. Science. 2012;337(6095):730–5.

    Article  CAS  PubMed  Google Scholar 

  17. Li Y, Rogoff HA, Keates S, Gao Y, Murikipudi S, Mikule K, et al. Suppression of cancer relapse and metastasis by inhibiting cancer stemness. Proc Natl Acad Sci. 2015;112(6):1839–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Choi J-H, Jang T-Y, Jeon S-E, Kim J-H, Lee C-J, Yun H-J, et al. The small-molecule Wnt inhibitor ICG-001 efficiently inhibits colorectal cancer stemness and metastasis by suppressing MEIS1 expression. Int J Mol Sci. 2021;22(24):13413.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Cho Y-H, Ro EJ, Yoon J-S, Mizutani T, Kang D-W, Park J-C, et al. 5-FU promotes stemness of colorectal cancer via p53-mediated WNT/β-catenin pathway activation. Nat Commun. 2020;11(1):1–13.

    Article  Google Scholar 

  20. Giannakis M, Mu XJ, Shukla SA, Qian ZR, Cohen O, Nishihara R, et al. Genomic correlates of immune-cell infiltrates in colorectal carcinoma. Cell Rep. 2016;15(4):857–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Becht E, de Reyniès A, Giraldo NA, Pilati C, Buttard B, Lacroix L, et al. Immune and stromal classification of colorectal cancer is associated with molecular subtypes and relevant for precision immunotherapy distinct immune phenotypes of colorectal cancer molecular subtypes. Clin Cancer Res. 2016;22(16):4057–66.

    Article  CAS  PubMed  Google Scholar 

  22. Lin L, Liu A, Peng Z, Lin H-J, Li P-K, Li C, et al. STAT3 is necessary for proliferation and survival in colon cancer–initiating CellsSTAT3 in colorectal cancer–initiating cells. Can Res. 2011;71(23):7226–37.

    Article  CAS  Google Scholar 

  23. Ma L, Dong L, Chang P. CD44v6 engages in colorectal cancer progression. Cell Death Dis. 2019;10(1):1–13.

    Article  Google Scholar 

  24. Wei F, Zhang T, Deng S-C, Wei J-C, Yang P, Wang Q, et al. PD-L1 promotes colorectal cancer stem cell expansion by activating HMGA1-dependent signaling pathways. Cancer Lett. 2019;450:1–13.

    Article  CAS  PubMed  Google Scholar 

  25. Arasanz H, Gato-Cañas M, Zuazo M, Ibañez-Vea M, Breckpot K, Kochan G, et al. PD1 signal transduction pathways in T cells. Oncotarget. 2017;8(31):51936.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Zhi Y, Mou Z, Chen J, He Y, Dong H, Fu X, et al. B7H1 expression and epithelial-to-mesenchymal transition phenotypes on colorectal cancer stem-like cells. PLoS ONE. 2015;10(8):e0135528.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Tallerico R, Todaro M, Di Franco S, Maccalli C, Garofalo C, Sottile R, et al. Human NK cells selective targeting of colon cancer–initiating cells: a role for natural cytotoxicity receptors and MHC class I molecules. J Immunol. 2013;190(5):2381–90.

    Article  CAS  PubMed  Google Scholar 

  28. Castriconi R, Daga A, Dondero A, Zona G, Poliani PL, Melotti A, et al. NK cells recognize and kill human glioblastoma cells with stem cell-like properties. J Immunol. 2009;182(6):3530–9.

    Article  CAS  PubMed  Google Scholar 

  29. Özdemir RBÖ, Özdemir AT, Oltulu F, Kurt K, Yiğittürk G, Kırmaz C. A comparison of cancer stem cell markers and nonclassical major histocompatibility complex antigens in colorectal tumor and noncancerous tissues. Ann Diagn Pathol. 2016;25:60–3.

    Article  PubMed  Google Scholar 

  30. Katoh H, Wang D, Daikoku T, Sun H, Dey SK, DuBois RN. CXCR2-expressing myeloid-derived suppressor cells are essential to promote colitis-associated tumorigenesis. Cancer Cell. 2013;24(5):631–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wang Y, Yin K, Tian J, Xia X, Ma J, Tang X, et al. Granulocytic myeloid-derived suppressor cells promote the stemness of colorectal cancer cells through exosomal S100A9. Adv Sci. 2019;6(18):1901278.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Jinushi M, Chiba S, Yoshiyama H, Masutomi K, Kinoshita I, Dosaka-Akita H, et al. Tumor-associated macrophages regulate tumorigenicity and anticancer drug responses of cancer stem/initiating cells. Proc Natl Acad Sci. 2011;108(30):12425–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wang D, Fu L, Sun H, Guo L, DuBois RN. Prostaglandin E2 promotes colorectal cancer stem cell expansion and metastasis in mice. Gastroenterology. 2015;149(7):1884–95. e4.

  34. Hsu Y-L, Chen Y-J, Chang W-A, Jian S-F, Fan H-L, Wang J-Y, et al. Interaction between tumor-associated dendritic cells and colon cancer cells contributes to tumor progression via CXCL1. Int J Mol Sci. 2018;19(8):2427.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Wang X, Qiu L, Li Z, Wang X-Y, Yi H. Understanding the multifaceted role of neutrophils in cancer and autoimmune diseases. Front Immunol. 2018;9:2456.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Hwang W-L, Lan H-Y, Cheng W-C, Huang S-C, Yang M-H. Tumor stem-like cell-derived exosomal RNAs prime neutrophils for facilitating tumorigenesis of colon cancer. J Hematol Oncol. 2019;12(1):1–17.

    Article  Google Scholar 

  37. Lu J, Ye X, Fan F, Xia L, Bhattacharya R, Bellister S, et al. Endothelial cells promote the colorectal cancer stem cell phenotype through a soluble form of Jagged-1. Cancer Cell. 2013;23(2):171–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Bussolati B, Grange C, Sapino A, Camussi G. Endothelial cell differentiation of human breast tumour stem/progenitor cells. J Cell Mol Med. 2009;13(2):309–19.

    Article  CAS  PubMed  Google Scholar 

  39. Bagley RG, Weber W, Rouleau C, Yao M, Honma N, Kataoka S, et al. Human mesenchymal stem cells from bone marrow express tumor endothelial and stromal markers. Int J Oncol. 2009;34(3):619–27.

    Article  CAS  PubMed  Google Scholar 

  40. Deng L, Jiang N, Zeng J, Wang Y, Cui H. The versatile roles of cancer-associated fibroblasts in colorectal cancer and therapeutic implications. Front Cell Dev Biol. 2021;9:733270.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Ma Y-C, Shi C, Zhang Y-N, Wang L-G, Liu H, Jia H-T, et al. The tyrosine kinase c-Src directly mediates growth factor-induced Notch-1 and Furin interaction and Notch-1 activation in pancreatic cancer cells. PLoS ONE. 2012;7(3):e33414.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Spaeth EL, Dembinski JL, Sasser AK, Watson K, Klopp A, Hall B, et al. Correction: mesenchymal stem cell transition to tumor-associated fibroblasts contributes to fibrovascular network expansion and tumor progression. PLoS One. 2013;8(3).

  43. Zou W, Zhao J, Li Y, Wang Z, Yan H, Liu Y, et al. Rat bone marrow-derived mesenchymal stem cells promote the migration and invasion of colorectal cancer stem cells. Onco Targets Ther. 2020;13:6617.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ames E, Murphy WJ. Advantages and clinical applications of natural killer cells in cancer immunotherapy. Cancer Immunol Immunother. 2014;63(1):21–8.

    Article  PubMed  Google Scholar 

  45. Dianat-Moghadam H, Sharifi M, Salehi R, Keshavarz M, Shahgolzari M, Amoozgar Z. Engaging stemness improves cancer immunotherapy. Cancer Lett. 2022;216007.

  46. Marofi F, Abdul-Rasheed OF, Rahman HS, Budi HS, Jalil AT, Yumashev AV, et al. CAR-NK cell in cancer immunotherapy; a promising frontier. Cancer Sci. 2021;112(9):3427–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Leuci V, Casucci M, Grignani G, Rotolo R, Rossotti U, Vigna E, et al. CD44v6 as innovative sarcoma target for CAR-redirected CIK cells. Oncoimmunology. 2018;7(5):e1423167.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Sahm C, Schönfeld K, Wels WS. Expression of IL-15 in NK cells results in rapid enrichment and selective cytotoxicity of gene-modified effectors that carry a tumor-specific antigen receptor. Cancer Immunol Immunother. 2012;61(9):1451–61.

    Article  CAS  PubMed  Google Scholar 

  49. Chen X, Han J, Chu J, Zhang L, Zhang J, Chen C, et al. A combinational therapy of EGFR-CAR NK cells and oncolytic herpes simplex virus 1 for breast cancer brain metastases. Oncotarget. 2016.

  50. Guo M, Luo B, Pan M, Li M, Xu H, Zhao F, et al. Colorectal cancer stem cell vaccine with high expression of MUC1 serves as a novel prophylactic vaccine for colorectal cancer. Int Immunopharmacol. 2020;88:106850.

    Article  CAS  PubMed  Google Scholar 

  51. El-Ashmawy N, Salem M, Khedr E, El-Zamarany E, Ibrahim A. Dual-targeted therapeutic strategy combining CSC–DC-based vaccine and cisplatin overcomes chemo-resistance in experimental mice model. Clin Transl Oncol. 2020;22(7):1155–65.

    Article  CAS  PubMed  Google Scholar 

  52. Mennonna D, Maccalli C, Romano MC, Garavaglia C, Capocefalo F, Bordoni R, et al. T cell neoepitope discovery in colorectal cancer by high throughput profiling of somatic mutations in expressed genes. Gut. 2017;66(3):454–63.

    Article  CAS  PubMed  Google Scholar 

  53. Miyamoto S, Kochin V, Kanaseki T, Hongo A, Tokita S, Kikuchi Y, et al. The antigen ASB4 on cancer stem cells serves as a target for CTL immunotherapy of colorectal cancer A Cancer Stem Cell Antigen for CTL Immunotherapy. Cancer Immunol Res. 2018;6(3):358–69.

    Article  CAS  PubMed  Google Scholar 

  54. Liu L, Liu Y, Xia Y, Wang G, Zhang X, Zhang H, et al. Synergistic killing effects of PD-L1-CAR T cells and colorectal cancer stem cell-dendritic cell vaccine-sensitized T cells in ALDH1-positive colorectal cancer stem cells. J Cancer. 2021;12(22):6629.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Mahmoudi R, Dianat-Moghadam H, Poorebrahim M, Siapoush S, Poortahmasebi V, Salahlou R, et al. Recombinant immunotoxins development for HER2-based targeted cancer therapies. Cancer Cell Int. 2021;21(1):1–17.

    Article  Google Scholar 

  56. She X, Qin S, Jing B, Jin X, Sun X, Lan X, et al. Radiotheranostic targeting cancer stem cells in human colorectal cancer xenografts. Mol Imag Biol. 2020;22(4):1043–53.

    Article  CAS  Google Scholar 

  57. Moore PA, Shah K, Yang Y, Alderson R, Roberts P, Long V, et al. Development of MGD007, a gpA33 x CD3-bispecific DART protein for T-cell immunotherapy of metastatic colorectal cancer. Mol Cancer Ther. 2018;17(8):1761–72.

    Article  CAS  PubMed  Google Scholar 

  58. Gupta R, Bhatt LK, Johnston TP, Prabhavalkar KS. Colon cancer stem cells: potential target for the treatment of colorectal cancer. Cancer Biol Ther. 2019;20(8):1068–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Prasad S, Ramachandran S, Gupta N, Kaushik I, Srivastava SK. Cancer cells stemness: a doorstep to targeted therapy. Biochim Biophys Acta (BBA)-Mol Basis Dis. 2020;1866(4):165424.

  60. Niedzwiecki D, Bertagnolli MM, Warren RS, Compton CC, Kemeny NE, Eckhardt SG, et al. Documenting the natural history of patients with resected stage II adenocarcinoma of the colon after random assignment to adjuvant treatment with edrecolomab or observation: results from CALGB 9581. J Clin Oncol. 2011;29(23):3146.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Clara JA, Monge C, Yang Y, Takebe N. Targeting signalling pathways and the immune microenvironment of cancer stem cells—a clinical update. Nat Rev Clin Oncol. 2020;17(4):204–32.

    Article  PubMed  Google Scholar 

  62. Calvo E, Aftimos P, Azaro A, de Miguel M, Jungels C, Cuairan JZ-M, et al. First-in-human, first-in-class study of the CD44v6 inhibitor AMC303 as monotherapy in patients with advanced epithelial tumors. Ann Oncol. 2018;29:viii134.

  63. Krishnamurthy N, Kurzrock R. Targeting the Wnt/beta-catenin pathway in cancer: Update on effectors and inhibitors. Cancer Treat Rev. 2018;62:50–60.

    Article  CAS  PubMed  Google Scholar 

  64. Bertrand FE, Angus CW, Partis WJ, Sigounas G. Developmental pathways in colon cancer: crosstalk between WNT, BMP. Hedgehog and Notch Cell cycle. 2012;11(23):4344–51.

    Article  CAS  PubMed  Google Scholar 

  65. Previs RA, Coleman RL, Harris AL, Sood AK. Molecular pathways: translational and therapeutic implications of the Notch signaling pathway in cancer. Clin Cancer Res. 2015;21(5):955–61.

    Article  CAS  PubMed  Google Scholar 

  66. Hoey T, Yen W-C, Axelrod F, Basi J, Donigian L, Dylla S, et al. DLL4 blockade inhibits tumor growth and reduces tumor-initiating cell frequency. Cell Stem Cell. 2009;5(2):168–77.

    Article  CAS  PubMed  Google Scholar 

  67. Li H, Yang C, Cheng H, Huang S, Zheng Y. CAR-T cells for colorectal cancer: target-selection and strategies for improved activity and safety. J Cancer. 2021;12(6):1804.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Kumar A, Cherukumilli M, Mahmoudpour SH, Brand K, Bandapalli OR. ShRNA-mediated knock-down of CXCL8 inhibits tumor growth in colorectal liver metastasis. Biochem Biophys Res Commun. 2018;500(3):731–7.

    Article  CAS  PubMed  Google Scholar 

  69. Zhong Z, Carroll KD, Policarpio D, Osborn C, Gregory M, Bassi R, et al. Anti–transforming growth factor β receptor II antibody has therapeutic efficacy against primary tumor growth and metastasis through multieffects on cancer, stroma, and immune cells. Clin Cancer Res. 2010;16(4):1191–205.

    Article  CAS  PubMed  Google Scholar 

  70. Zielske SP, Lawrence TS. 952. Human mesenchymal stem cells migrate to colon cancer xenografts: potential carriers of cancer therapeutics. Mol Ther. 2006;13:S367.

  71. Keshavarz M, Ebrahimzadeh MS, Miri SM, Dianat-Moghadam H, Ghorbanhosseini SS, Mohebbi SR, et al. Oncolytic Newcastle disease virus delivered by mesenchymal stem cells-engineered system enhances the therapeutic effects altering tumor microenvironment. Virology journal. 2020;17(1):1–13.

    Google Scholar 

  72. Wanandi SI, Lestari DR, Hilbertina N, Siregar NC, Jusman SW, Abdullah M. Secretomes of primary cancer-associated fibroblasts upregulate the expression of stemness markers in HT-29 human colorectal carcinoma cells. The Indonesian Biomedical Journal. 2020;12(4):333–9.

    Article  Google Scholar 

  73. Saleem HM, Ramaiah P, Gupta J, Jalil AT, Kadhim NA, Alsaikhan F, et al. Nanotechnology-empowered lung cancer therapy: from EMT role in cancer metastasis to application of nanoengineered structures for modulating growth and metastasis. Environ Res. 2023:115942.

  74. Xiang A-D, Li B, Du Y-F, Abbaspoor S, Jalil AT, Saleh MM, et al. In vivo and in vitro biocompatibility studies of Pt based nanoparticles: a new agent for chemoradiation therapy. J Clust Sci. 2023:1–11.

  75. Talaei S, Mellatyar H, Pilehvar-Soltanahmadi Y, Asadi A, Akbarzadeh A, Zarghami N. 17-Allylamino-17-demethoxygeldanamycin loaded PCL/PEG nanofibrous scaffold for effective growth inhibition of T47D breast cancer cells. Journal of Drug Delivery Science and Technology. 2019;49:162–8.

    Article  CAS  Google Scholar 

  76. Wei W, Zarghami N, Abasi M, Ertas YN, Pilehvar Y. Implantable magnetic nanofibers with ON–OFF switchable release of curcumin for possible local hyperthermic chemotherapy of melanoma. J Biomed Mater Res, Part A. 2022;110(4):851–60.

    Article  CAS  Google Scholar 

  77. Cabeza L, Perazzoli G, Mesas C, Jiménez-Luna C, Prados J, Rama AR, et al. Nanoparticles in colorectal cancer therapy: latest in vivo assays, clinical trials, and patents. AAPS PharmSciTech. 2020;21:1–15.

    Article  Google Scholar 

  78. Pavitra E, Dariya B, Srivani G, Kang S-M, Alam A, Sudhir P-R, et al., editors. Engineered nanoparticles for imaging and drug delivery in colorectal cancer. Semin Cancer Biol. 2021. Elsevier.

  79. Azizi M, Dianat-Moghadam H, Salehi R, Farshbaf M, Iyengar D, Sau S, et al. Interactions between tumor biology and targeted nanoplatforms for imaging applications. Adv Func Mater. 2020;30(19):1910402.

    Article  CAS  Google Scholar 

  80. Mellatyar H, Talaei S, Pilehvar-Soltanahmadi Y, Dadashpour M, Barzegar A, Akbarzadeh A, et al. 17-DMAG-loaded nanofibrous scaffold for effective growth inhibition of lung cancer cells through targeting HSP90 gene expression. Biomed Pharmacother. 2018;105:1026–32.

    Article  CAS  PubMed  Google Scholar 

  81. Demeure MJ, Armaghany T, Ejadi S, Ramanathan RK, Elfiky A, Strosberg JR, et al. A phase I/II study of TKM-080301, a PLK1-targeted RNAi in patients with adrenocortical cancer (ACC). Am Soc Clin Oncol. 2016.

  82. Tian X, Nguyen M, Foote HP, Caster JM, Roche KC, Peters CG, et al. CRLX101, a nanoparticle–drug conjugate containing camptothecin, improves rectal cancer chemoradiotherapy by inhibiting DNA repair and HIF1αCRLX101 improves cancer chemoradiotherapy. Can Res. 2017;77(1):112–22.

    Article  CAS  Google Scholar 

  83. Golan T, Grenader T, Ohana P, Amitay Y, Shmeeda H, La-Beck NM, et al. Pegylated liposomal mitomycin C prodrug enhances tolerance of mitomycin C: a phase 1 study in advanced solid tumor patients. Cancer Med. 2015;4(10):1472–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Shahgolzari M, Dianat-Moghadam H, Fiering S, editors. Multifunctional plant virus nanoparticles in the next generation of cancer immunotherapies. Semin Cancer Biol. 2022. Elsevier.

  85. Bourseau-Guilmain E, Bejaud J, Griveau A, Lautram N, Hindré F, Weyland M, et al. Development and characterization of immuno-nanocarriers targeting the cancer stem cell marker AC133. Int J Pharm. 2012;423(1):93–101.

    Article  CAS  PubMed  Google Scholar 

  86. Joseph MM, Ramya AN, Vijayan VM, Nair JB, Bastian BT, Pillai RK, et al. Targeted theranostic nano vehicle endorsed with self-destruction and immunostimulatory features to circumvent drug resistance and wipe-out tumor reinitiating cancer stem cells. Small. 2020;16(38):2003309.

    Article  CAS  Google Scholar 

  87. Rahimian S, Fransen MF, Kleinovink JW, Amidi M, Ossendorp F, Hennink WE. Polymeric microparticles for sustained and local delivery of antiCD40 and antiCTLA-4 in immunotherapy of cancer. Biomaterials. 2015;61:33–40.

    Article  CAS  PubMed  Google Scholar 

  88. Smith TT, Stephan SB, Moffett HF, McKnight LE, Ji W, Reiman D, et al. In situ programming of leukaemia-specific T cells using synthetic DNA nanocarriers. Nat Nanotechnol. 2017;12(8):813–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Wong C, Stylianopoulos T, Cui J, Martin J, Chauhan VP, Jiang W, et al. Multistage nanoparticle delivery system for deep penetration into tumor tissue. Proc Natl Acad Sci. 2011;108(6):2426–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Shahgolzari M, Dianat-Moghadam H, Yavari A, Fiering SN, Hefferon K. Multifunctional plant virus nanoparticles for targeting breast cancer tumors. Vaccines. 2022;10(9):1431.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Hassani Najafabadi A, Zhang J, Aikins ME, Najaf Abadi ZI, Liao F, Qin Y, et al. Cancer immunotherapy via targeting cancer stem cells using vaccine nanodiscs. Nano Lett. 2020;20(10):7783–92.

    Article  CAS  PubMed  Google Scholar 

  92. He L, Nie T, Xia X, Liu T, Huang Y, Wang X, et al. Designing bioinspired 2D MoSe2 nanosheet for efficient photothermal-triggered cancer immunotherapy with reprogramming tumor-associated macrophages. Adv Func Mater. 2019;29(30):1901240.

    Article  Google Scholar 

  93. Naseri M, Zöller M, Hadjati J, Ghods R, Ranaei Pirmardan E, Kiani J, et al. Dendritic cells loaded with exosomes derived from cancer stem cell-enriched spheroids as a potential immunotherapeutic option. J Cell Mol Med. 2021;25(7):3312–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Lee N-K, Kothandan VK, Kothandan S, Byun Y, Hwang S-R. Exosomes and cancer stem cells in cancer immunity: current reports and future directions. Vaccines. 2021;9(5):441.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Hu Y, Yan C, Mu L, Huang K, Li X, Tao D, et al. Fibroblast-derived exosomes contribute to chemoresistance through priming cancer stem cells in colorectal cancer. PLoS ONE. 2015;10(5):e0125625.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Chupradit S, Jasim SA, Bokov D, Mahmoud MZ, Roomi AB, Hachem K, Rudiansyah M, Suksatan W, Bidares R. Recent advances in biosensor devices for HER-2 cancer biomarker detection. Analytical Methods. 2022;14(13):1301-10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Gerew A, Sexton S, Wasko KM, Shearman MS, Zhang K, Chang K-H, et al. Deletion of CISH and TGFβR2 in iPSC-derived NK cells promotes high cytotoxicity and enhances in vivo tumor killing. Blood. 2021;138:2780.

    Article  Google Scholar 

  98. Maeda T, Nagano S, Ichise H, Kataoka K, Yamada D, Ogawa S, et al. Regeneration of CD8αβ T cells from T-cell–derived iPSC imparts potent tumor antigen-specific cytotoxicityregeneration of potent tumor antigen-specific CTL from iPSC. Can Res. 2016;76(23):6839–50.

    Article  CAS  Google Scholar 

  99. Morita R, Hirohashi Y, Torigoe T, Ito-Inoda S, Takahashi A, Mariya T, et al. Olfactory receptor family 7 subfamily c member 1 is a novel marker of colon cancer–initiating cells and is a potent target of immunotherapy. Clin Cancer Res. 2016;22(13):3298–309.

    Article  CAS  PubMed  Google Scholar 

  100. Maruoka S, Ojima T, Iwamoto H, Kitadani J, Tabata H, Tominaga S, et al. Tumor RNA transfected DCs derived from iPS cells elicit cytotoxicity against cancer cells induced from colorectal cancer patients in vitro. Sci Rep. 2022;12(1):1–14.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Abduladheem Turki Jalil: Conceptualization; investigation; writing, original draft; writing, review and editing; visualization; supervision; and project administration. Hayder Abdullah Talib, Rahman S. Zabibah, Ahmed Mohsin Huran Al Jawadri, Mohanad Ali Abdulhadi, Abdul Kareem J. Al-Azzawi, and Ahmed Ali: Investigation, writing — original draft. All co-authors approved the final version of the manuscript.

Corresponding author

Correspondence to Abduladheem Turki Jalil.

Ethics declarations

Ethics Approval and Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• CRCSCs provide tumor initiation, proliferation, metastasis, therapy resistance, and tumor recurrence.

• Characterization of the CRCSC-immune cell interaction contributes to the development of efficient therapeutic strategies.

• Allogenic or autologous immune cells are potent to eliminate CSCs with high-affinity targeting.

• Nano delivery systems provide simultaneous targeting of CRCSCs and tumor-supportive immune lineages.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jalil, A.T., Abdulhadi, M.A., Al Jawadri, A.M.H. et al. Cancer Stem Cells in Colorectal Cancer: Implications for Targeted Immunotherapies. J Gastrointest Canc 54, 1046–1057 (2023). https://doi.org/10.1007/s12029-023-00945-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12029-023-00945-0

Keywords

Navigation