Skip to main content

Advertisement

Log in

Data Centric Molecular Analysis and Evaluation of Hepatocellular Carcinoma Therapeutics Using Machine Intelligence-Based Tools

  • Invited Reviews
  • Published:
Journal of Gastrointestinal Cancer Aims and scope Submit manuscript

Abstract

Purpose

Computational approaches have been used at different stages of drug development with the purpose of decreasing the time and cost of conventional experimental procedures. Lately, techniques mainly developed and applied in the field of artificial intelligence (AI), have been transferred to different application domains such as biomedicine.

Methods

In this study, we conducted an investigative analysis via data-driven evaluation of potential hepatocellular carcinoma (HCC) therapeutics in the context of AI-assisted drug discovery/repurposing. First, we discussed basic concepts, computational approaches, databases, modeling approaches, and featurization techniques in drug discovery/repurposing. In the analysis part, we automatically integrated HCC-related biological entities such as genes/proteins, pathways, phenotypes, drugs/compounds, and other diseases with similar implications, and represented these heterogeneous relationships via a knowledge graph using the CROssBAR system.

Results

Following the system-level evaluation and selection of critical genes/proteins and pathways to target, our deep learning-based drug/compound-target protein interaction predictors DEEPScreen and MDeePred have been employed for predicting new bioactive drugs and compounds for these critical targets. Finally, we embedded ligands of selected HCC-associated proteins which had a significant enrichment with the CROssBAR system into a 2-D space to identify and repurpose small molecule inhibitors as potential drug candidates based on their molecular similarities to known HCC drugs.

Conclusions

We expect that these series of data-driven analyses can be used as a roadmap to propose early-stage potential inhibitors (from database-scale sets of compounds) to both HCC and other complex diseases, which may subsequently be analyzed with more targeted in silico and experimental approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of Data and Material

Results/data are available as supplementary data.

Code Availability

All of the utilized computational methods are available as tools/web-services/repositories. CROssBAR: https://crossbar.kansil.org and https://github.com/cansyl/CROssBAR, DEEPScreen: https://github.com/cansyl/DEEPScreen, MDeePred: https://github.com/cansyl/MDeePred, iBioProVis: https://ibpv.kansil.org/.

References

  1. Xue H, et al. Review of drug repositioning approaches and resources. Int J Biol Sci. 2018;14(10):1232–44. https://doi.org/10.7150/ijbs.24612.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Van Norman GA. Drugs, devices, and the FDA: part 1: an overview of approval processes for drugs. JACC Basic Transl Sci. 2016;1(3):170–9. https://doi.org/10.1016/j.jacbts.2016.03.002.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Yeu Y, Yoon Y, Park S. Protein localization vector propagation: a method for improving the accuracy of drug repositioning. Mol Biosyst. 2015;11(7):2096–102. https://doi.org/10.1039/c5mb00306g.

    Article  CAS  PubMed  Google Scholar 

  4. Seyhan AA. Lost in translation: the valley of death across preclinical and clinical divide – identification of problems and overcoming obstacles. Transl Med Commun. 2019;4(1):18. https://doi.org/10.1186/s41231-019-0050-7.

    Article  Google Scholar 

  5. Pushpakom S, et al. Drug repurposing: progress, challenges and recommendations. Nat Rev Drug Discov. 2019;18(1):41–58. https://doi.org/10.1038/nrd.2018.168.

    Article  CAS  PubMed  Google Scholar 

  6. Vamathevan J, et al. Applications of machine learning in drug discovery and development. Nat Rev Drug Discov. 2019;18(6):463–77. https://doi.org/10.1038/s41573-019-0024-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Law V, et al. DrugBank 4.0: shedding new light on drug metabolism. Nucleic Acids Res. 2014;42(Database issue):D1091–7. https://doi.org/10.1093/nar/gkt1068.

  8. Rifaioglu AS, et al. Recent applications of deep learning and machine intelligence on in silico drug discovery: methods, tools and databases. Brief Bioinform. 2019;20(5):1878–912. https://doi.org/10.1093/bib/bby061.

    Article  CAS  PubMed  Google Scholar 

  9. Wang Y, et al. PubChem: a public information system for analyzing bioactivities of small molecules. Nucleic Acids Res. 2009;37(Web Server issue):W623–33. https://doi.org/10.1093/nar/gkp456.

  10. Gaulton A, et al. ChEMBL: a large-scale bioactivity database for drug discovery. Nucleic Acids Res. 2012;40(Database issue):D1100-7. https://doi.org/10.1093/nar/gkr777.

  11. Wishart DS, et al. DrugBank: a comprehensive resource for in silico drug discovery and exploration. Nucleic Acids Res. 2006;34(Database issue):D668–72. https://doi.org/10.1093/nar/gkj067.

  12. Kuhn M, et al. STITCH: interaction networks of chemicals and proteins. Nucleic Acids Res. 2008;36(Database issue):D684–8. https://doi.org/10.1093/nar/gkm795.

  13. Gilson MK, et al. BindingDB in 2015: a public database for medicinal chemistry, computational chemistry and systems pharmacology. Nucleic Acids Res. 2016;44(D1):D1045–53. https://doi.org/10.1093/nar/gkv1072.

    Article  CAS  PubMed  Google Scholar 

  14. Benson ML, et al. Binding MOAD, a high-quality protein-ligand database. Nucleic Acids Res. 2008;36(Database issue):D674–8. https://doi.org/10.1093/nar/gkm911.

  15. Kanehisa M, et al. KEGG for representation and analysis of molecular networks involving diseases and drugs. Nucleic Acids Res. 2010;38(Database issue):D355–60. https://doi.org/10.1093/nar/gkp896.

  16. Kuhn M, et al. The SIDER database of drugs and side effects. Nucleic Acids Res. 2016;44(D1):D1075–9. https://doi.org/10.1093/nar/gkv1075.

    Article  CAS  PubMed  Google Scholar 

  17. Liu Y, et al. DCDB: drug combination database. Bioinformatics. 2010;26(4):587–8. https://doi.org/10.1093/bioinformatics/btp697.

    Article  CAS  PubMed  Google Scholar 

  18. Wishart DS, et al. HMDB: the human metabolome database. Nucleic Acids Res. 2007;35(Database issue):D521–6. https://doi.org/10.1093/nar/gkl923.

  19. Wishart D, et al. T3DB: the toxic exposome database. Nucleic Acids Res. 2015;43(Database issue):D928–34. https://doi.org/10.1093/nar/gku1004.

  20. Weininger D. SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules. J Chem Info Comput Sci. 1988;28(1):31–36. https://doi.org/10.1021/ci00057a005.

  21. Heller SR, et al. InChI, the IUPAC International Chemical Identifier. J Cheminfo. 2015;7(1):23. https://doi.org/10.1186/s13321-015-0068-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Dogan T, et al. CROssBAR: comprehensive resource of biomedical relations with knowledge graph representations. Nucleic Acids Res. 2021. https://doi.org/10.1093/nar/gkab543.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Rifaioglu AS, et al. DEEPScreen: high performance drug-target interaction prediction with convolutional neural networks using 2-D structural compound representations. Chem Sci. 2020;11(9):2531–57. https://doi.org/10.1039/c9sc03414e.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Rifaioglu AS, et al. MDeePred: novel multi-channel protein featurization for deep learning-based binding affinity prediction in drug discovery. Bioinformatics. 2021;37(5):693–704. https://doi.org/10.1093/bioinformatics/btaa858.

    Article  CAS  PubMed  Google Scholar 

  25. Wu Y, et al. Cancer stem cells: a potential breakthrough in HCC-targeted therapy. Front Pharmacol. 2020;11:198. https://doi.org/10.3389/fphar.2020.00198.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Nault JC, et al. The role of telomeres and telomerase in cirrhosis and liver cancer. Nat Rev Gastroenterol Hepatol. 2019;16(9):544–58. https://doi.org/10.1038/s41575-019-0165-3.

    Article  PubMed  Google Scholar 

  27. Manmadhan S, Ehmer U. Hippo signaling in the liver - a long and ever-expanding story. Front Cell Dev Biol. 2019;7:33. https://doi.org/10.3389/fcell.2019.00033.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Ersahin T, Ozturk M, Cetin-Atalay R. Molecular biology of liver cancer, in Rev Cell Biol Mol Med. 2015;206–243.

  29. Wands JR, Kim M. WNT/beta-catenin signaling and hepatocellular carcinoma. Hepatology. 2014;60(2):452–4. https://doi.org/10.1002/hep.27081.

    Article  CAS  PubMed  Google Scholar 

  30. von Olshausen G, et al. Hepatitis B virus promotes beta-catenin-signalling and disassembly of adherens junctions in a Src kinase dependent fashion. Oncotarget. 2018;9(74):33947–33960. https://doi.org/10.18632/oncotarget.26103.

  31. Moon H, Ro SW. MAPK/ERK signaling pathway in hepatocellular carcinoma. Cancers (Basel). 2021;13(12). https://doi.org/10.3390/cancers13123026.

  32. Shang N, et al. Focal adhesion kinase and beta-catenin cooperate to induce hepatocellular carcinoma. Hepatology. 2019;70(5):1631–45. https://doi.org/10.1002/hep.30707.

    Article  CAS  PubMed  Google Scholar 

  33. Vitiello M, et al. Multiple pathways of SIRT6 at the crossroads in the control of longevity, cancer, and cardiovascular diseases. Ageing Res Rev. 2017;35:301–11. https://doi.org/10.1016/j.arr.2016.10.008.

    Article  CAS  PubMed  Google Scholar 

  34. Zha Y, et al. Downregulation of Rap1 promotes 5-fluorouracil-induced apoptosis in hepatocellular carcinoma cell line HepG2. Oncol Rep. 2014;31(4):1691–8. https://doi.org/10.3892/or.2014.3033.

    Article  CAS  PubMed  Google Scholar 

  35. Ngo MT, et al. The role of IGF/IGF-1R signaling in hepatocellular carcinomas: stemness-related properties and drug resistance. Int J Mol Sci. 2021;22(4). https://doi.org/10.3390/ijms22041931.

  36. Marin JJG, et al. Molecular bases of drug resistance in hepatocellular carcinoma. cancers (Basel). 2020;12(6). https://doi.org/10.3390/cancers12061663.

  37. Alzofon N, Jimeno A. Capmatinib for non-small cell lung cancer. Drugs Today (Barc). 2021;57(1):17–25. https://doi.org/10.1358/dot.2021.57.1.3239638.

    Article  CAS  Google Scholar 

  38. Qin S, et al. A phase II study of the efficacy and safety of the MET inhibitor capmatinib (INC280) in patients with advanced hepatocellular carcinoma. Ther Adv Med Oncol. 2019;11:1758835919889001. https://doi.org/10.1177/1758835919889001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Dimri M, Satyanarayana A. Molecular signaling pathways and therapeutic targets in hepatocellular carcinoma. Cancers (Basel). 2020;12(2). https://doi.org/10.3390/cancers12020491.

  40. Fallahi P, et al. Sorafenib and thyroid cancer. BioDrugs. 2013;27(6):615–28. https://doi.org/10.1007/s40259-013-0049-y.

    Article  CAS  PubMed  Google Scholar 

  41. Kane RC, et al. Sorafenib for the treatment of advanced renal cell carcinoma. Clin Cancer Res. 2006;12(24):7271–8. https://doi.org/10.1158/1078-0432.CCR-06-1249.

    Article  CAS  PubMed  Google Scholar 

  42. Llovet JM, et al. Sorafenib in advanced hepatocellular carcinoma. N Engl J Med. 2008;359(4):378–90. https://doi.org/10.1056/NEJMoa0708857.

    Article  CAS  PubMed  Google Scholar 

  43. Al-Salama ZT, Syed YY, Scott LJ. Lenvatinib: A review in hepatocellular carcinoma. Drugs. 2019;79(6):665–74. https://doi.org/10.1007/s40265-019-01116-x.

    Article  CAS  PubMed  Google Scholar 

  44. Motzer R, et al. Lenvatinib plus pembrolizumab or everolimus for advanced renal cell carcinoma. N Engl J Med. 2021;384(14):1289–300. https://doi.org/10.1056/NEJMoa2035716.

    Article  CAS  PubMed  Google Scholar 

  45. Stjepanovic N, Capdevila J. Multikinase inhibitors in the treatment of thyroid cancer: specific role of lenvatinib. Biologics. 2014;8:129–39. https://doi.org/10.2147/BTT.S39381.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kuwana M, Azuma A. Nintedanib: new indication for systemic sclerosis-associated interstitial lung disease. Mod Rheumatol. 2020;30(2):225–31. https://doi.org/10.1080/14397595.2019.1696505.

    Article  PubMed  Google Scholar 

  47. Awasthi N, Schwarz RE. Profile of nintedanib in the treatment of solid tumors: the evidence to date. Onco Targets Ther. 2015;8:3691–701. https://doi.org/10.2147/OTT.S78805.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Yamanaka T, et al. Nintedanib inhibits intrahepatic cholangiocarcinoma aggressiveness via suppression of cytokines extracted from activated cancer-associated fibroblasts. Br J Cancer. 2020;122(7):986–94. https://doi.org/10.1038/s41416-020-0744-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Sakurai T, Kudo M. Molecular link between liver fibrosis and hepatocellular carcinoma. Liver Cancer. 2013;2(3–4):365–6. https://doi.org/10.1159/000343851.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Zhang Q, et al. Intratumoral heterogeneity of hepatocellular carcinoma: from single-cell to population-based studies. World J Gastroenterol. 2020;26(26):3720–36. https://doi.org/10.3748/wjg.v26.i26.3720.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kahraman DC, Kahraman T, Cetin-Atalay R. Targeting PI3K/Akt/mTOR pathway identifies differential expression and functional role of IL8 in liver cancer stem cell enrichment. Mol Cancer Ther. 2019;18(11):2146–57. https://doi.org/10.1158/1535-7163.MCT-19-0004.

    Article  CAS  PubMed  Google Scholar 

  52. Shakiba E, Sadeghi M, Shakiba M. A systematic review and meta-analysis of evaluation of serum interleukin 8 levels in hepatocellular carcinoma. Clin Exp Hepatol. 2019;5(2):123–8. https://doi.org/10.5114/ceh.2019.84780.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Yu LX, Ling Y, Wang HY. Role of nonresolving inflammation in hepatocellular carcinoma development and progression. NPJ Precis Oncol. 2018;2(1):6. https://doi.org/10.1038/s41698-018-0048-z.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Li Y, et al. IL-6/STAT3 signaling contributes to sorafenib resistance in hepatocellular carcinoma through targeting cancer stem cells. Onco Targets Ther. 2020;13:9721–30. https://doi.org/10.2147/OTT.S262089.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Donmez A, et al. iBioProVis: interactive visualization and analysis of compound bioactivity space. Bioinformatics. 2020;36(17):4674. https://doi.org/10.1093/bioinformatics/btaa666.

    Article  PubMed  Google Scholar 

  56. Van der Maaten L, Hinton G. Visualizing data using t-SNE. J Machine Learn Res. 2008;9:2579–2605.

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

R. C. A., D. C. K., M. V. A., and T. D. conceived the idea and planned the work. A. S. R., A. A., A. D., H. A., R. C. A., V. A., and T. D. constructed the utilized methods and tools. R. C. A., D. C. K., and E. N. performed the data analysis. R. C. A., D. C. K., E. N., A. C. A., V. A., and T. D. wrote the manuscript. R. C. A., A. C. A., V. A., and T. D. supervised the overall study. All the authors have approved the manuscript.

Corresponding authors

Correspondence to Rengul Cetin-Atalay, Deniz Cansen Kahraman or Tunca Doğan.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 47 KB)

Supplementary file2 (XLSX 47 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cetin-Atalay, R., Kahraman, D.C., Nalbat, E. et al. Data Centric Molecular Analysis and Evaluation of Hepatocellular Carcinoma Therapeutics Using Machine Intelligence-Based Tools. J Gastrointest Canc 52, 1266–1276 (2021). https://doi.org/10.1007/s12029-021-00768-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12029-021-00768-x

Keywords

Navigation