Skip to main content

Advertisement

Log in

Evaluation of CRISPR/Cas9 System Effects on Knocking Out NEAT1 Gene in AGS Gastric Cancer Cell Line with Therapeutic Perspective

  • Original Research
  • Published:
Journal of Gastrointestinal Cancer Aims and scope Submit manuscript

Abstract

Aim

Gastric cancer (GC) is one of the most common malignant tumors globally, with an increasing incidence rate. Nuclear paraspeckle assembly transcript 1 (NEAT1) is a long non-coding RNA (lncRNAs) responsible for regulating cell cycle progression, apoptosis, cell growth, proliferation, and migration in various cells. The present survey was performed to assess the effects of NEAT1 gene knocking out by CRISPR/Cas9 system in human gastric cancer cells.

Methods

The CRISPR/Cas9 genome editing technique was used to knockout NEAT1 in AGS cells as a gastric cancer model. After the design and construction of the vector, transfection was performed. The expression levels of mRNA, the survival of cells, apoptosis, and cell migration were evaluated by real-time quantitative polymerase chain reaction, flow cytometry, and scratch wound.

Results

Degradation of NEAT1 by CRISPR/cas9 significantly suppressed the gene’s expression rate, arrested cell cycle in the G0/G1 phase, and a significant reduction in cell number in the S phase (P < 0.05). Degradation of NEAT1 by CRISPR/cas9 also restrained the ability to migrate in transfected cells compared to the control group (P < 0.01). Knockout of NEAT1 via impact on miR-34a gene expression induced apoptosis of AGS cells (P < 0.05) with increasing in the FAS level and total apoptosis (P < 0.001).

Conclusions

Findings suggest that NEAT1 plays a vital role in cellular mechanisms of GC’s occurrence and can serve as a new treatment target in GC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Sitarz R, et al. Gastric cancer: epidemiology, prevention, classification, and treatment. Cancer Manag Res. 2018;10:239–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Siegel RL, Miller KD, Jemal A. Cancer statistics. Ca Cancer J Clin. 2018;68(1):7–30.

    Article  PubMed  Google Scholar 

  3. Khodavirdipour A, et al. Apoptosis detection methods in diagnosis of cancer and their potential role in treatment: advantages and disadvantages: a review. J Gastrointest Cancer. 2021.

  4. Desai AG, et al. Medicinal plants and cancer chemoprevention. Curr Drug Metab. 2008;9(7):581–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Khodavirdipour A, Zarean R, Safaralizadeh R. Evaluation of the anti-cancer effect of Syzygium cumini ethanolic extract on HT-29 colorectal cell line. J Gastrointest Cancer. 2020:1–7.

  6. Khodavirdipour A, et al. To study in vitro anti-proliferative and pro-apoptotic properties of Salmonella typhi in human pancreatic cancer cell line. Avicenna J Clin Microbiol Infect. 2019;6(3):77–82.

    Article  CAS  Google Scholar 

  7. Khodavirdipour A, et al. To study the anti-cancer effects of Shigella flexneri in AspC-1 pancreatic cancer cell line in approach to Bax and bcl-2 genes. J Gastrointest Cancer. 2020:1–7.

  8. Harisa GI, et al. Bacteriosomes as a promising tool in biomedical applications: immunotherapy and drug delivery. AAPS PharmSciTech. 2020;21(5):168.

    Article  CAS  PubMed  Google Scholar 

  9. Farhood B, Geraily G, Alizadeh A. Incidence and mortality of various cancers in iran and compare to other countries: a review article. Iran J Public Health, 2018;47(3):309–316.

  10. Saberi M, et al. An In silico method to identify key proteins involved in the development of gastric cancer. Res Med. 2017;41(3):199–209.

    Google Scholar 

  11. Yousefi H, et al. Long noncoding RNAs and exosomal lncRNAs: classification, and mechanisms in breast cancer metastasis and drug resistance. Oncogene. 2019:1–22.

  12. Dong P, et al. Long non-coding RNA NEAT1: a novel target for diagnosis and therapy in human tumors. Front Genet. 2018;9:471.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Powers J, et al. Short hairpin RNAs artifactually impair cell growth and suppress clustered microRNA expression. bioRxiv. 2018:372920.

  14. Hu X, et al. The plasma lncRNA acting as fingerprint in non-small-cell lung cancer. Tumor Biol. 2016;37(3):3497–504.

    Article  CAS  Google Scholar 

  15. Yu X, Li Z. The role of microRNAs expression in laryngeal cancer. Oncotarget. 2015;6(27):23297.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Ding N, et al. NEAT1 regulates cell proliferation and apoptosis of ovarian cancer by miR-34a-5p/BCL2. Onco Targets Ther. 2017;10:4905–15.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Zhong F, et al. LncRNA NEAT1 promotes colorectal cancer cell proliferation and migration via regulating glial cell-derived neurotrophic factor by sponging miR-196a-5p. Acta Biochim Biophys Sin. 2018;50(12):1190–9.

    Article  CAS  PubMed  Google Scholar 

  18. Li J-H, et al. Long non-coding RNA NEAT1 promotes malignant progression of thyroid carcinoma by regulating miRNA-214. Int J Oncol. 2017;50(2):708–16.

    Article  CAS  PubMed  Google Scholar 

  19. Chakravarty D, et al. The oestrogen receptor alpha-regulated lncRNA NEAT1 is a critical modulator of prostate cancer. Nat Commun. 2014;5(1):1–16.

    Article  Google Scholar 

  20. He C, et al. Aberrant NEAT 1 expression is associated with clinical outcome in high grade glioma patients. APMIS. 2016;124(3):169–74.

    Article  CAS  PubMed  Google Scholar 

  21. Fu J-W, Kong Y, Sun X. Long noncoding RNA NEAT1 is an unfavorable prognostic factor and regulates migration and invasion in gastric cancer. J Cancer Res Clin Oncol. 2016;142(7):1571–9.

    Article  CAS  PubMed  Google Scholar 

  22. Zhang J, et al. Silence of long noncoding RNA NEAT1 inhibits malignant biological behaviors and chemotherapy resistance in gastric cancer. Pathol Oncol Res. 2018;24(1):109–13.

    Article  CAS  PubMed  Google Scholar 

  23. Ma Y, et al. Enhanced expression of long non-coding RNA NEAT1 is associated with the progression of gastric adenocarcinomas. World J Surg Oncol. 2016;14(1):1–6.

    Google Scholar 

  24. Zhan T, et al. CRISPR/Cas9 for cancer research and therapy. in Seminars in cancer biology. Elsevier; 2019.

  25. Liu C, et al. Delivery strategies of the CRISPR-Cas9 gene-editing system for therapeutic applications. J Control Release. 2017;266:17–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Yoshiba T, et al. CRISPR/Cas9-mediated cervical cancer treatment targeting human papillomavirus E6. Oncol Lett. 2019;17(2):2197–206.

    CAS  PubMed  Google Scholar 

  27. Mehravar M, et al. Efficient Production of Biallelic RAG1 Knockout mouse embryonic stem cell using CRISPR/Cas9. Iran J Biotechnol. 2019;17(1):e2205.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Zhu S, et al. Genome-scale deletion screening of human long non-coding RNAs using a paired-guide RNA CRISPR–Cas9 library. Nat Biotechnol. 2016;34(12):1279–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Skripova V, et al. CRISPR/Cas9 technique for identification of genes regulating oxaliplatin resistance of pancreatic cancer cell line. BioNanoScience. 2017;7(1):97–100.

    Article  Google Scholar 

  30. Vitiello M, Tuccoli A, Poliseno L. Long non-coding RNAs in cancer: implications for personalized therapy. Cell Oncol. 2015;38(1):17–28.

    Article  CAS  Google Scholar 

  31. Yu X, et al. NEAT 1: A novel cancer-related long non-coding RNA. Cell Prolif. 2017;50(2):e12329.

    Article  PubMed Central  Google Scholar 

  32. Luo Y, et al. Long non-coding RNA NEAT1 promotes colorectal cancer progression by competitively binding miR-34a with SIRT1 and enhancing the Wnt/β-catenin signaling pathway. Cancer Lett. 2019;440:11–22.

    Article  PubMed  Google Scholar 

  33. Shin VY, et al. Long non-coding RNA NEAT1 confers oncogenic role in triple-negative breast cancer through modulating chemoresistance and cancer stemness. Cell Death Dis. 2019;10(4):1–10.

    Article  Google Scholar 

  34. Qi L, et al. lncRNA NEAT1 competes against let-7a to contribute to non-small cell lung cancer proliferation and metastasis. Biomed Pharmacother. 2018;103:1507–15.

    Article  CAS  PubMed  Google Scholar 

  35. Li Y, et al. LncRNA NEAT1 regulates cell viability and invasion in esophageal squamous cell carcinoma through the miR-129/CTBP2 axis. Dis Markers. 2017;2017:1–12.

    CAS  Google Scholar 

  36. Cossu AM, et al. Long non-coding RNAs as important biomarkers in laryngeal cancer and other head and neck tumours. Int J Mol Sci. 2019;20(14):3444.

    Article  CAS  PubMed Central  Google Scholar 

  37. Zhang Y-Q, et al. CRISPR/Cas9-mediated knockout of the PDEF gene inhibits migration and invasion of human gastric cancer AGS cells. Biomed Pharmacother. 2019;111:76–85.

    Article  CAS  PubMed  Google Scholar 

  38. Li Y, et al. NEAT expression is associated with tumor recurrence and unfavorable prognosis in colorectal cancer. Oncotarget. 2015;6(29):27641.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Hu Y, et al. Knockdown of the oncogene lncRNA NEAT1 restores the availability of miR-34c and improves the sensitivity to cisplatin in osteosarcoma. Biosci Rep. 2018;38(3):1–10.

    Article  Google Scholar 

Download references

Acknowledgements

The results presented in this paper were part of the Ph.D student thesis and were financially supported by personal student cost.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abbas Doosti.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haghighi, N., Doosti, A. & Kiani, J. Evaluation of CRISPR/Cas9 System Effects on Knocking Out NEAT1 Gene in AGS Gastric Cancer Cell Line with Therapeutic Perspective. J Gastrointest Canc 53, 623–631 (2022). https://doi.org/10.1007/s12029-021-00669-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12029-021-00669-z

Keywords

Navigation