Skip to main content
Log in

The Promising Effect of Peucedanum chenur Chloroformic Extract on Prevention of Human Colorectal Cancer Progression by Modulating miR-135b, miR-21, and APC Genes

  • Original Research
  • Published:
Journal of Gastrointestinal Cancer Aims and scope Submit manuscript

Abstract

Purpose

The therapeutic use of herbal medicines for the diseases, including cancer, is increasing due to their lower side effects. The present research evaluated the effect of Peucedanum chenur chloroformic extract (PCCE) on cell proliferation against HCT-116 human colorectal cancer cell line.

Methods

The cytotoxic effect of PCCE was evaluated by MTT assay. The activity of the Wnt/B-catenin pathway was assayed through measuring the expression of miR-135b, miR-21, and APC genes by real-time PCR. The flow cytometry and scratch tests were used to study the cell cycle and cell migration, respectively. Also, the antioxidant activity of PCCE was measured by DPPH and iron-chelating tests.

Results

The results showed the downregulation of miR-135b and miR-21 and overexpression of the APC gene. Furthermore, PCCE decreased the free radicals, cell migration, and cell proliferation. The antioxidant activity of PCCE was confirmed by standard tests.

Conclusion

Altogether, our findings suggest that purified compounds of PCCE could be developed as a potent chemo-preventive drug for the treatment of CRC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hosseinzadeh A, Daraela A. Environmental factors associated with sporadic colorectal cancer. 2012.

  2. Asadi-Samani M, Kooti W, Aslani E, Shirzad H. A systematic review of Iran’s medicinal plants with anticancer effects. J Evid Based Integr Med. 2016;21(2):143–53.

    CAS  Google Scholar 

  3. Malatyali E, Tepe B, Degerli S, Berk S, Akpulat HA. In vitro amoebicidal activity of four Peucedanum species on Acanthamoeba castellanii cysts and trophozoites. Parasitol Res. 2012;110(1):167–74.

    Article  Google Scholar 

  4. Sarkhail P. Traditional uses, phytochemistry and pharmacological properties of the genus Peucedanum: a review. J Ethnopharmacol. 2014;156:235–70.

    Article  CAS  Google Scholar 

  5. Yadegari S, Saidijam M, Moradi M, Dastan D, Mahdavinezhad A. Aerial parts of peucedanum chenur have anti-cancer properties through the induction of apoptosis and inhibition of invasion in human colorectal cancer cells. Iran Biomed J. 2020;24(5):309–18.

    Article  Google Scholar 

  6. Liang T, Yue W, Li Q. Chemopreventive effects of Peucedanum praeruptorum DUNN and its major constituents on SGC7901 gastric cancer cells. Molecules. 2010;15(11):8060–71.

    Article  CAS  Google Scholar 

  7. Li X-M, Jiang X-J, Yang K, Wang L-X, Wen S-Z, Wang F. Prenylated coumarins from Heracleum stenopterum, Peucedanum praeruptorum, Clausena lansium, and Murraya paniculata. Nat Prod Bioprospect. 2016;6(5):233–7.

    Article  CAS  Google Scholar 

  8. Li XY, Zu YY, Ning W, Tang MX, Gong C, Niu SL, Hua HM. A new xanthyletin-type coumarin from the roots of Peucedanum praeruptorum. J Asian Nat Prod Res. 2019:1–8.

  9. Network CGA. Comprehensive molecular characterization of human colon and rectal cancer. Nature. 2012;487(7407):330.

    Article  Google Scholar 

  10. Schatoff EM, Leach BI, Dow LE. Wnt signaling and colorectal cancer. Curr Colectral Cancer Rep. 2017;13(2):101–10.

    Google Scholar 

  11. Aoki K, Taketo MM. Adenomatous polyposis coli (APC): a multi-functional tumor suppressor gene. J Cell Sci. 2007;120(19):3327–35.

    Article  CAS  Google Scholar 

  12. Powell SM, Zilz N, Beazer-Barclay Y, Bryan TM, Hamilton SR, Thibodeau SN, Vogelstein B, Kinzler KW. APC mutations occur early during colorectal tumorigenesis. Nature. 1992;359(6392):235–7.

    Article  CAS  Google Scholar 

  13. Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc. 2008;3(6):1101–8.

    Article  CAS  Google Scholar 

  14. Alam MN, Bristi NJ, Rafiquzzaman M. Review on in vivo and in vitro methods evaluation of antioxidant activity. Saudi Pharm J. 2013;21(2):143–52.

    Article  Google Scholar 

  15. Shimada K, Fujikawa K, Yahara K, Nakamura T. Antioxidative properties of xanthan on the autoxidation of soybean oil in cyclodextrin emulsion. J Agric Food Chem. 1992;40(6):945–8.

    Article  CAS  Google Scholar 

  16. Tanzadehpanah H, Asoodeh A, Saidijam M, Chamani J, Mahaki H. Improving efficiency of an angiotensin converting enzyme inhibitory peptide as multifunctional peptides. J Biomol Struct Dyn Biomol Struct Dyn. 2017:1–16.

  17. Decker EA, Welch B. Role of ferritin as a lipid oxidation catalyst in muscle food. J Agric Food Chem. 1990;38(3):674–7.

    Article  CAS  Google Scholar 

  18. Arnold M, Sierra MS, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global patterns and trends in colorectal cancer incidence and mortality. Gut. 2017;66(4):683–91.

    Article  Google Scholar 

  19. Jänne PA, Mayer RJ. Chemoprevention of colorectal cancer. N Engl J Med. 2000;342(26):1960–8.

    Article  Google Scholar 

  20. Wang J, Liu L, Qiu H, Zhang X, Guo W, Chen W, Tian Y, Fu L, Shi D, Cheng J. Ursolic acid simultaneously targets multiple signaling pathways to suppress proliferation and induce apoptosis in colon cancer cells. PLoS One. 2013;8(5):e63872.

  21. Fong WF, Zhang JX, Wu JY, Tse KW, Wang C, Cheung HY, Yang MS. Pyranocoumarin(+/-)-4’-O-acetyl-3’-O-angeloyl-cis-khellactone induces mitochondrial-dependent apoptosis in HL-60 cells. Planta Med. 2004;70(6):489–95.

    Article  CAS  Google Scholar 

  22. Movahedian A, Zolfaghari B, Mirshekari M. Antioxidant effects of hydroalcoholic and polyphenolic extracts of Peucedanum pastinacifolium Boiss. & Hausskn. Res Pharm Sci. 2016;11(5):405.

  23. Morioka T, Suzui M, Nabandith V, Inamine M, Aniya Y, Nakayama T, Ichiba T, Mori H, Yoshimi N. The modifying effect of Peucedanum japonicum, a herb in the Ryukyu Islands, on azoxymethane-induced colon preneoplastic lesions in male F344 rats. Cancer Lett. 2004;205(2):133–41.

    Article  CAS  Google Scholar 

  24. Logan CY, Nusse R. The Wnt signaling pathway in development and disease. Annu Rev Cell Dev Biol. 2004;20:781–810.

    Article  CAS  Google Scholar 

  25. Rubinfeld B, Albert I, Porfiri E, Fiol C, Munemitsu S, Polakis P. Binding of GSK3β to the APC-β-catenin complex and regulation of complex assembly. Science. 1996;272(5264):1023–6.

    Article  CAS  Google Scholar 

  26. Ha N-C, Tonozuka T, Stamos JL, Choi H-J, Weis WI. Mechanism of phosphorylation-dependent binding of APC to β-catenin and its role in β-catenin degradation. Mol Cell. 2004;15(4):511–21.

    Article  CAS  Google Scholar 

  27. Kudo Y, Kitajima S, Ogawa I, Hiraoka M, Sargolzaei S, Keikhaee MR, Sato S, Miyauchi M, Takata T. Invasion and metastasis of oral cancer cells require methylation of E-cadherin and/or degradation of membranous β-catenin. Clin Cancer Res. 2004;10(16):5455–63.

    Article  CAS  Google Scholar 

  28. Pendás-Franco N, García JM, Peña C, Valle N, Pálmer HG, Heinäniemi M, Carlberg C, Jimenez B, Bonilla F, Munoz A. DICKKOPF-4 is induced by TCF/β-catenin and upregulated in human colon cancer, promotes tumour cell invasion and angiogenesis and is repressed by 1α, 25-dihydroxyvitamin D 3. Oncogene. 2008;27(32):4467.

    Article  Google Scholar 

  29. Bu P, Chen K-Y, Chen JH, Wang L, Walters J, Shin YJ, Goerger JP, Sun J, Witherspoon M, Rakhilin N. A microRNA miR-34a-regulated bimodal switch targets Notch in colon cancer stem cells. Cell Stem Cell. 2013;12(5):602–15.

    Article  CAS  Google Scholar 

  30. Zhao JJ, Lin J, Zhu D, Wang X, Brooks D, Chen M, Chu ZB, Takada K, Ciccarelli B, Tao J. miR-30–5p functions as a tumor suppressor and novel therapeutic tool by targeting the oncogenic Wnt/β-catenin/BCL9 pathway. Cancer Res. 2014.

  31. Bahreyni A, Rezaei M, Bahrami A, Khazaei M, Fiuji H, Ryzhikov M, Ferns GA, Avan A, Hassanian SM. Diagnostic, prognostic, and therapeutic potency of microRNA 21 in the pathogenesis of colon cancer, current status and prospective. J Cell Physiol. 2019;234(6):8075–81.

    Article  CAS  Google Scholar 

  32. Lin P-L, Wu D-W, Huang C-C, He T-Y, Chou M-C, Sheu G-T, Lee H. MicroRNA-21 promotes tumour malignancy via increased nuclear translocation of β-catenin and predicts poor outcome in APC-mutated but not in APC-wild-type colorectal cancer. Carcinogenesis. 2014;35(10):2175–82.

    Article  CAS  Google Scholar 

  33. Nagel R, le Sage C, Diosdado B, van der Waal M, Vrielink JAO, Bolijn A, Meijer GA, Agami R. Regulation of the adenomatous polyposis coli gene by the miR-135 family in colorectal cancer. Can Res. 2008;68(14):5795–802.

    Article  CAS  Google Scholar 

  34. Sansom OJ, Reed KR, Hayes AJ, Ireland H, Brinkmann H, Newton IP, Batlle E, Simon-Assmann P, Clevers H, Nathke IS. Loss of Apc in vivo immediately perturbs Wnt signaling, differentiation, and migration. Genes Dev. 2004;18(12):1385–90.

    Article  CAS  Google Scholar 

  35. Chen TH, Chang SW, Huang CC, Wang KL, Yeh KT, Liu CN, Lee H, Lin CC, Cheng YW. The prognostic significance of APC gene mutation and miR-21 expression in advanced-stage colorectal cancer. Colorectal Dis. 2013;15(11):1367–74.

    Article  Google Scholar 

  36. Ma X, Kumar M, Choudhury SN, Buscaglia LEB, Barker JR, Kanakamedala K, Liu M-F, Li Y. Loss of the miR-21 allele elevates the expression of its target genes and reduces tumorigenesis. Proc Natl Acad Sci. 2011;108(25):10144–9.

    Article  CAS  Google Scholar 

  37. Zhou X, Ren Y, Moore L, Mei M, You Y, Xu P, Wang B, Wang G, Jia Z, Pu P. Downregulation of miR-21 inhibits EGFR pathway and suppresses the growth of human glioblastoma cells independent of PTEN status. Lab Invest. 2010;90(2):144–55.

    Article  CAS  Google Scholar 

  38. Hashimoto Y, Akiyama Y, Yuasa Y. Multiple to multiple relationships between microRNAs and target genes in gastric cancer. PLoS One. 2013;8(5):e62589.

  39. Tan BL, Norhaizan ME. Manilkara zapota (L.) P. Royen leaf water extract triggered apoptosis and activated caspase-dependent pathway in HT-29 human colorectal cancer cell line. Biomed Pharmacother. 2019;110:748–57.

  40. Wei LH, Lin JM, Chu JF, Chen HW, Li QY, Peng J. Scutellaria barbata D. Don inhibits colorectal cancer growth via suppression of Wnt/β-catenin signaling pathway. Chin J Integr Med. 2017;23(11):858–63.

  41. Radtke F, Clevers H. Self-renewal and cancer of the gut: two sides of a coin. Science. 2005;307(5717):1904–9.

    Article  CAS  Google Scholar 

  42. Yang CM, Ji S, Li Y, Fu LY, Jiang T, Meng FD. β-Catenin promotes cell proliferation, migration, and invasion but induces apoptosis in renal cell carcinoma. Onco Targets Ther. 2017;10:711.

Download references

Acknowledgements

Thanks are due to Saeed Yadegari for assistance with some experiments.

Funding

This study was funded by the Vice Chancellery for Research and Technology, Hamadan University of Medical Sciences (grant number: 9709135421).

Author information

Authors and Affiliations

Authors

Contributions

All the authors contributed in this investigation.

Corresponding author

Correspondence to Ali Mahdavinezhad.

Ethics declarations

Consent for Publication

The authors transferred all copyright ownership of the manuscript to The Journal of Gastrointestinal Cancer.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fadaei, M., Amini, R., Dastan, D. et al. The Promising Effect of Peucedanum chenur Chloroformic Extract on Prevention of Human Colorectal Cancer Progression by Modulating miR-135b, miR-21, and APC Genes. J Gastrointest Canc 53, 549–556 (2022). https://doi.org/10.1007/s12029-021-00660-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12029-021-00660-8

Keywords

Navigation