Skip to main content

Advertisement

Log in

Hypermethylated miR-424 in Colorectal Cancer Subsequently Upregulates VEGF

  • Original Research
  • Published:
Journal of Gastrointestinal Cancer Aims and scope Submit manuscript

Abstract

Purpose

Colorectal cancer (CRC) is the second leading cause of death from cancer in adults. Recent advances have shown that cancer cells can have some epigenetic changes involved in all stages of cancer. It has also been shown that miR-424 acts as gene expression regulators in many biological processes, including angiogenesis with mediators such as VEGF. In the current study, to identify the potential role of miR-424 in colorectal cancer progression, methylation status of miR-424 promoter region and its expression level have been evaluated. Besides, the correlation between VEGF level and miR-424 expression level has been assessed.

Methods

Methylation status miR-424 promoter was assessed using methylation-specific polymerase chain reaction (MSP). The expression level of miR-424 in human colorectal cancer tissue was analyzed by quantitative PCR. HCT116 cell line was selected to evaluate the correlation between the miR-424 expression level and the promoter’s methylation status. VEGF expression, one out of mir-424 targets involved in angiogenesis and cancer progression, was measured by western blot analysis in the pairs of cancer tissues and their adjacent tissues.

Results

Our results have revealed that the promoter region of miR-424 is methylated in cancer cells compared to normal cells, leading to downregulation of miR-424 in the colorectal cancer tissues compared to the normal tissues. Also, we found that the expression protein’s level of VEGF in the tumor cells is increased compared with normal tissues.

Conclusion

The present study suggests that hypermethylation downregulates miR-424. VEGF expression is upregulated with decreased miR-424 in colorectal cancer, which results in cancer progression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Siegel R, Ma J, Zou Z, Jemal A (2014) Cancer statistics, 2014. CA: a cancer journal for clinicians 64 (1):9–29. https://doi.org/10.3322/caac.21208.

  2. Hu X, Schwarz JK, Lewis JS, Huettner PC, Rader JS, Deasy JO, Grigsby PW, Wang X. A microRNA expression signature for cervical cancer prognosis. Can Res. 2010;70(4):1441–8.

    Article  CAS  Google Scholar 

  3. Cole K, Tabernero M, Anderson KS. Biologic characteristics of premalignant breast disease. Cancer Biomark. 2011;9(1–6):177–92.

    Article  Google Scholar 

  4. Kheir TB, Futoma-Kazmierczak E, Jacobsen A, Krogh A, Bardram L, Hother C, Grønbæk K, Federspiel B, Lund AH, Friis-Hansen L. miR-449 inhibits cell proliferation and is down-regulated in gastric cancer. Mol Cancer. 2011;10(1):29.

    Article  CAS  Google Scholar 

  5. Franko J, Shi Q, Goldman CD, Pockaj BA, Nelson GD, Goldberg RM, Pitot HC, Grothey A, Alberts SR, Sargent DJ. Treatment of colorectal peritoneal carcinomatosis with systemic chemotherapy: a pooled analysis of north central cancer treatment group phase III trials N9741 and N9841. J Clin Oncol. 2012;30(3):263.

    Article  Google Scholar 

  6. Winawer SJ, Fletcher RH, Miller L, Godlee F, Stolar M, Mulrow C, Woolf S, Glick S, Ganiats T, Bond J. Colorectal cancer screening: clinical guidelines and rationale. Gastroenterology. 1997;112(2):594–642.

    Article  CAS  Google Scholar 

  7. Rex DK, Lehman GA, Ulbright TM, Smith JJ, Pound DC, Hawes RH, Helper DJ, Wiersema MJ, Langefeld CD, Li W. Colonic neoplasia in asymptomatic persons with negative fecal occult blood tests: influence of age, gender, and family history. Am J Gastroenterol. 1993;88(6):825–31.

    CAS  PubMed  Google Scholar 

  8. Cho WC. OncomiRs: the discovery and progress of microRNAs in cancers. Mol Cancer. 2007;6(1):60.

    Article  Google Scholar 

  9. Sassen S, Miska EA, Caldas C. MicroRNA—implications for cancer. Virchows Arch. 2008;452(1):1–10.

    Article  CAS  Google Scholar 

  10. Brentnall TA, Haggitt RC, Rabinovitch PS, Kimmey MB, Bronner MP, Levine DS, Kowdley KV, Stevens AC, Crispin DA, Emond M. Risk and natural history of colonic neoplasia in patients with primary sclerosing cholangitis and ulcerative colitis. Gastroenterology. 1996;110(2):331–8.

    Article  CAS  Google Scholar 

  11. Chekhun VF, Kulik GI, Yurchenko OV, Tryndyak VP, Todor IN, Luniv LS, Tregubova NA, Pryzimirska TV, Montgomery B, Rusetskaya NV. Role of DNA hypomethylation in the development of the resistance to doxorubicin in human MCF-7 breast adenocarcinoma cells. Cancer Lett. 2006;231(1):87–93.

    Article  CAS  Google Scholar 

  12. Shahmohamadnejad S, Nouri Ghonbalani Z, Tahbazlahafi B, Panahi G, Meshkani R, Emami Razavi A, Shokri Afra H, Khalili E Aberrant methylation of miR-124 upregulates DNMT3B in colorectal cancer to accelerate invasion and migration. Arch Physiol Biochem. 2020:1–7.

  13. Zamore PD, Tuschl T, Sharp PA, Bartel DP. RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell. 2000;101(1):25–33.

    Article  CAS  Google Scholar 

  14. Fabbri M, Garzon R, Cimmino A, Liu Z, Zanesi N, Callegari E, Liu S, Alder H, Costinean S, Fernandez-Cymering C. MicroRNA-29 family reverts aberrant methylation in lung cancer by targeting DNA methyltransferases 3A and 3B. Proc Natl Acad Sci. 2007;104(40):15805–10.

    Article  CAS  Google Scholar 

  15. Saito Y, Jones PA. Epigenetic activation of tumor suppressor microRNAs in human cancer cells. Cell Cycle. 2006;5(19):2220–2. https://doi.org/10.4161/cc.5.19.3340.

    Article  CAS  PubMed  Google Scholar 

  16. Aqeilan R, Calin G, Croce C. miR-15a and miR-16-1 in cancer: discovery, function and future perspectives. Cell Death Differ. 2010;17(2):215.

    Article  CAS  Google Scholar 

  17. Guil S, Cáceres JF. The multifunctional RNA-binding protein hnRNP A1 is required for processing of miR-18a. Nat Struct Mol Biol. 2007;14(7):591.

    Article  CAS  Google Scholar 

  18. Jazdzewski K, Murray EL, Franssila K, Jarzab B, Schoenberg DR, de la Chapelle A. Common SNP in pre-miR-146a decreases mature miR expression and predisposes to papillary thyroid carcinoma. Proc Natl Acad Sci. 2008;105(20):7269–74.

    Article  CAS  Google Scholar 

  19. Shin VY, Jin H, Ng EKO, Cheng ASL, Chong WWS, Wong CYP, Leung WK, Sung JJY, Chu K-M. NF-κB targets miR-16 and miR-21 in gastric cancer: involvement of prostaglandin E receptors. Carcinogenesis. 2010;32(2):240–5. https://doi.org/10.1093/carcin/bgq240.

    Article  CAS  PubMed  Google Scholar 

  20. Wilting SM, van Boerdonk RA, Henken FE, Meijer CJ, Diosdado B, Meijer GA, le Sage C, Agami R, Snijders PJ, Steenbergen RD. Methylation-mediated silencing and tumour suppressive function of hsa-miR-124 in cervical cancer. Mol Cancer. 2010;9(1):167.

    Article  Google Scholar 

  21. Jin C, Li M, Ouyang Y, Tan Z, Jiang Y. MiR-424 functions as a tumor suppressor in glioma cells and is down-regulated by DNA methylation. J Neurooncol. 2017;133(2):247–55. https://doi.org/10.1007/s11060-017-2438-4.

    Article  CAS  PubMed  Google Scholar 

  22. Fang Y, Liang X, Xu J, Cai X. miR-424 targets AKT3 and PSAT1 and has a tumor-suppressive role in human colorectal cancer. Cancer Manag Res. 2018;10:6537.

    Article  CAS  Google Scholar 

  23. Zhang M, Ce G, Yang Y, Li G, Dong J, Ai Y, Ma Q, Li W. MiR-424 promotes non-small cell lung cancer progression and metastasis through regulating the tumor suppressor gene TNFAIP1. Cell Physiol Biochem. 2017;42(1):211–21.

    Article  CAS  Google Scholar 

  24. Pallasch CP, Patz M, Park YJ, Hagist S, Eggle D, Claus R, Debey-Pascher S, Schulz A, Frenzel LP, Claasen J, Kutsch N, Krause G, Mayr C, Rosenwald A, Plass C, Schultze JL, Hallek M, Wendtner C-M. miRNA deregulation by epigenetic silencing disrupts suppression of the oncogene PLAG1 in chronic lymphocytic leukemia. Blood. 2009;114(15):3255–64. https://doi.org/10.1182/blood-2009-06-229898.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Shah NR, Chen H. MicroRNAs in pathogenesis of breast cancer: Implications in diagnosis and treatment. World J Clin Oncol. 2014;5(2):48–60. https://doi.org/10.5306/wjco.v5.i2.48.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Wu C-T, Lin W-Y, Chang Y-H, Lin P-Y, Chen W-C, Chen M-F. DNMT1-dependent suppression of microRNA424 regulates tumor progression in human bladder cancer. Oncotarget. 2015;6(27):24119–31. https://doi.org/10.18632/oncotarget.4431.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Chamorro-Jorganes A, Araldi E, Penalva LOF, Sandhu D, Fernández-Hernando C, Suárez Y. MicroRNA-16 and microRNA-424 regulate cell-autonomous angiogenic functions in endothelial cells via targeting vascular endothelial growth factor receptor-2 and fibroblast growth factor receptor-1. Arterioscler Thromb Vasc Biol. 2011;31(11):2595–606. https://doi.org/10.1161/ATVBAHA.111.236521.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by (95-03-30-32977) from the Deputy of Research, Tehran University of Medical Sciences.

Author information

Authors and Affiliations

Authors

Contributions

EK and PP: concept, ideas, and writing. ZNGH and SHSH: performed experiments and biostatistics. All authors have read and agree with this paper.

Corresponding author

Correspondence to Ehsan Khalili.

Ethics declarations

Ethics Statement

This work complies with the guidelines of the World Medical Association, Declaration of Helsinki. This work was approved by the Human Research Ethics Committee of Tehran University of Medical Sciences (IR.TUMS.MEDICINE.REC.1395.997).

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghonbalani, Z.N., Shahmohamadnejad, S., Pasalar, P. et al. Hypermethylated miR-424 in Colorectal Cancer Subsequently Upregulates VEGF. J Gastrointest Canc 53, 380–386 (2022). https://doi.org/10.1007/s12029-021-00614-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12029-021-00614-0

Keywords

Navigation