Skip to main content

Advertisement

Log in

Apoptosis Detection Methods in Diagnosis of Cancer and Their Potential Role in Treatment: Advantages and Disadvantages: a Review

  • Review Article
  • Published:
Journal of Gastrointestinal Cancer Aims and scope Submit manuscript

Abstract

Introduction

Interruption of regulation of apoptosis can play a leading role in cancers where elevated apoptosis causes neurodegeneration, autoimmunity, AIDS, and ischemia. One famous example can be p53’s downregulation, which is a tumor suppressor gene, which consequently can cause a decrease in apoptosis rate and intense tumor growth and progression and development and inactivation of 53; it can be extended to many cancers in human. Anyhow, apoptosis is a double-edge sword. There are many trials and studies are going on observation and understanding of different steps involved in apoptosis. Apoptosis has a very major role in carcinogenesis and the treatment of cancer.

Aim

In this updated-cum-comprehensive review, we would like to cover what is apoptosis and cancer and also, will discuss all known methods of apoptosisdetection, their applicability in the treatment of cancer, and their advantages, disadvantages, and limitations.

Material and methods

Published articles on indexing sources such as PubMed, Scopus from 2000 to date.

Result

By considering all above information including each methods pros and cons, these routine methods could be great tool with distinctive qualities in treatmentwhich can be great help from patient perspective and as well from government ad health care system point of view.

Conclusion

Accurate diagnosis of cell apoptotic biopathways at different stages assists in evaluating near to exact apoptotic index, which is the perfect sign andindicator for metastasis and also prognosis, thus foreseeing treatment outcome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kerr JF, Harmon BV. Definition and incidence of apoptosis: an historical perspective. Apoptosis. 1991;3:5–29.

    Google Scholar 

  2. Rai KR, Moore J, Wu J, Novick SC, O’Brien SM. Effect of the addition of oblimersen (Bcl-2 antisense) to fludarabine/cyclophosphamide for relapsed/refractory chronic lymphocytic leukemia (CLL) on survival in patients who achieve CR/nPR: five-year follow-up from a randomized phase III study. J Clin Oncol. 2008;26(15):7008.

    Article  Google Scholar 

  3. Abou-Nassar K, Brown JR. Novel agents for the treatment of chronic lymphocytic leukemia. Clin Adv Hematol Oncol. 2010;8(12):886–95.

    PubMed  Google Scholar 

  4. Ocker M, Neureiter D, Lueders M, Zopf S, Ganslmayer M, Hahn EG, et al. Variants of bcl-2 specific siRNA for silencing antiapoptotic bcl-2 in pancreatic cancer. Gut. 2005;54(9):1298–308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Roth JA, Nguyen D, Lawrence DD, Kemp BL, Carrasco CH, Ferson DZ, et al. Retrovirus–mediated wild–type P53 gene transfer to tumors of patients with lung cancer. Nat Med. 1996;2(9):985–91.

    Article  CAS  PubMed  Google Scholar 

  6. Chène P. p53 as a drug target in cancer therapy. Expert Opin Ther Patents. 2001;11(6):923–35.

    Article  Google Scholar 

  7. Suzuki K, Matsubara H. Recent advances in p53 research and cancer treatment. Biomed Res Int. 2011;2011:978312.

    Google Scholar 

  8. Boeckler FM, Joerger AC, Jaggi G, Rutherford TJ, Veprintsev DB, Fersht AR. Targeted rescue of a destabilized mutant of p53 by an in silico screened drug. Proc Natl Acad Sci. 2008;105(30):10360–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Rippin TM, Bykov VJ, Freund SM, Selivanova G, Wiman KG, Fersht AR. Characterization of the p53-rescue drug CP-31398 in vitro and in living cells. Oncogene. 2002;21(14):2119–29.

    Article  CAS  PubMed  Google Scholar 

  10. Shangary S, Wang S. Small-molecule inhibitors of the MDM2-p53 protein-protein interaction to reactivate p53 function: a novel approach for cancer therapy. Annu Rev Pharmacol Toxicol. 2009;49:223–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kuball J, Schuler M, Ferreira EA, Herr W, Neumann M, Obenauer-Kutner L, et al. Generating p53-specific cytotoxic T lymphocytes by recombinant adenoviral vector-based vaccination in mice, but not man. Gene Ther. 2002;9(13):833–43.

    Article  CAS  PubMed  Google Scholar 

  12. Svane IM, Pedersen AE, Johnsen HE, Nielsen D, Kamby C, Gaarsdal E, et al. Vaccination with p53-peptide–pulsed dendritic cells, of patients with advanced breast cancer: report from a phase I study. Cancer Immunol Immunother. 2004;53(7):633–41.

    Article  CAS  PubMed  Google Scholar 

  13. Vermeij R, Leffers N, Van Der Burg SH, Melief CJ, Daemen T, Nijman HW. Immunological and clinical effects of vaccines targeting p53-overexpressing malignancies. Biomed Res Int. 2011;2011:702146.

    CAS  Google Scholar 

  14. Dai Y, Lawrence TS, Xu L. Overcoming cancer therapy resistance by targeting inhibitors of apoptosis proteins and nuclear factor-kappa B. Am J Transl Res. 2009;1(1):1–15.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Cao C, Mu Y, Hallahan DE, Lu B. XIAP and survivin as therapeutic targets for radiation sensitization in preclinical models of lung cancer. Oncogene. 2004;23(42):7047–52.

    Article  CAS  PubMed  Google Scholar 

  16. Hu Y, Cherton-Horvat G, Dragowska V, Baird S, Korneluk RG, Durkin JP, et al. Antisense oligonucleotides targeting XIAP induce apoptosis and enhance chemotherapeutic activity against human lung cancer cells in vitro and in vivo. Clin Cancer Res. 2003;9(7):2826–36.

    CAS  PubMed  Google Scholar 

  17. Ohnishi K, Scuric Z, Schiestl RH, Okamoto N, Takahashi A, Ohnishi T. siRNA targeting NBS1 or XIAP increases radiation sensitivity of human cancer cells independent of TP53 status. Radiat Res. 2006;166(3):454–62.

    Article  CAS  PubMed  Google Scholar 

  18. Yamaguchi Y, Shiraki K, Fuke H, Inoue T, Miyashita K, Yamanaka Y, et al. Targeting of X-linked inhibitor of apoptosis protein or survivin by short interfering RNAs sensitize hepatoma cells to TNF-related apoptosis-inducing ligand-and chemotherapeutic agent-induced cell death. Oncol Rep. 2005;14(5):1311–6.

    CAS  PubMed  Google Scholar 

  19. Grossman D, McNiff JM, Li F, Altieri DC. Expression and targeting of the apoptosis inhibitor, survivin, in human melanoma. J Investig Dermatol. 1999;113(6):1076–81.

    Article  CAS  PubMed  Google Scholar 

  20. Pennati M, Folini M, Zaffaroni N. Targeting survivin in cancer therapy: fulfilled promises and open questions. Carcinogenesis. 2007;28(6):1133–9.

    Article  CAS  PubMed  Google Scholar 

  21. Sun H, Liu L, Lu J, Qiu S, Yang CY, Yi H, et al. Cyclopeptide Smac mimetics as antagonists of IAP proteins. Bioorg Med Chem Lett. 2010;20(10):3043–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wang S, Lu J, McEachern D, Sun H, Bai L, Peng Y, et al. Therapeutic potential and molecular mechanism of a novel, potent, non-peptide, Smac mimetic SM-164 in combination with TRAIL for cancer treatment. Mol Cancer Ther Molcanther. 2011;10(5):902–14.

    Article  Google Scholar 

  23. Rohn JL, Noteborn MHM. The viral death effector Apoptin reveals tumor-specific processes. Apoptosis. 2004;9(3):315–22.

    Article  CAS  PubMed  Google Scholar 

  24. Philchenkov A, Zavelevich M, Kroczak TJ, Los MJ. Caspases and cancer: mechanisms of inactivation and new treatment modalities. Exp Oncol. 2004;26(2):82–97.

    CAS  PubMed  Google Scholar 

  25. Khodavirdipour A, Jamshidi F, Nejad HR, Zandi M, Zarean R. To study the anti-cancer effects of Shigella flexneri in AspC-1 pancreatic cancer cell line in approach to Bax and bcl-2 genes. J Gastrointest Cancer. 2020:1–7.

  26. Khodavirdipour A, Zandi M, Khodavirdipour A, Khayyam N. To study in vitro anti-proliferative and pro-apoptotic properties of Salmonella typhi in human pancreatic cancer cell line. Avicenna J Clin Microbiol Infect. 2019;6(3):77–82.

    Article  CAS  Google Scholar 

  27. Yamabe K, Shimizu S, Ito T, Yoshioka Y, Nomura M, Narita M, et al. Cancer gene therapy using a pro-apoptotic gene, caspase-3. Gene Ther. 1999;6(12):1952–9.

    Article  CAS  PubMed  Google Scholar 

  28. Cam L, Boucquey A, Coulomb-L’hermine A, Weber A, Horellou P. Gene transfer of constitutively active caspase-3 induces apoptosis in a human hepatoma cell line. J Gene Med. 2005;7(1):30–8.

    Article  CAS  PubMed  Google Scholar 

  29. Li X, Fan R, Zou X, Gao L, Jin H, Du R, et al. Inhibitory effect of recombinant adenovirus carrying immunocaspase-3 on hepatocellular carcinoma. Biochem Biophys Res Commun. 2007;358(2):489–94.

    Article  CAS  PubMed  Google Scholar 

  30. Fadeel B, Gleiss B, Högstrand K, Chandra J, Wiedmer T, Sims PJ, et al. Phosphatidylserine exposure during apoptosis is a cell-type-specific event and does not correlate with plasma membrane phospholipid scramblase expression. Biochem Biophys Res Commun. 1999;266(2):504–11.

    Article  CAS  PubMed  Google Scholar 

  31. Elmore S. Apoptosis: a review of programmed cell death. Toxicol Pathol. 2007;35(4):495–516.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ziegler U, Groscurth P. Morphological features of cell death. Physiology. 2004;19(3):124–8.

    Article  CAS  Google Scholar 

  33. Khodavirdipour A, Mehregan M, Rajabi A, Shiri Y. Microscopy and its application in microbiology and medicine from light to quantum microscopy: a mini review. Avicenna J Clin Microbiol Infect. 2019;6(4):133–7.

    Article  Google Scholar 

  34. Kurosaka K, Takahashi M, Watanabe N, Kobayashi Y. Silent cleanup of very early apoptotic cells by macrophages. J Immunol. 2003;171(9):4672–9.

    Article  CAS  PubMed  Google Scholar 

  35. Louagie H, Cornelissen M, Philippé J, Vral A, Thierens H, De Ridder L. Flow cytometric scoring of apoptosis compared to electron microscopy in γ irradiated lymphocytes. Cell Biol Int. 1998;22(4):277–83.

    Article  CAS  PubMed  Google Scholar 

  36. Sarraf CE, Ansari TW, Conway P, Notay M, Hill S, Alison MR. Bromodeoxyuridine-labelled apoptosis after treatment with antimetabolites in two murine tumours and in small intestinal crypts. Br J Cancer. 1993;68(4):678–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Shiraishi H, Okamoto H, Yoshimura A, Yoshida H. ER stress-induced apoptosis and caspase-12 activation occurs downstream of mitochondrial apoptosis involving Apaf-1. J Cell Sci. 2006;119(19):3958–66.

    Article  CAS  PubMed  Google Scholar 

  38. Stacey NH, Bishop CJ, Halliday JW, Halliday WJ, Cooksley WG, Powell LW, et al. Apoptosis as the mode of cell death in antibody-dependent lymphocytotoxicity. J Cell Sci. 1985;74(1):169–79.

    Article  CAS  PubMed  Google Scholar 

  39. Krysko DV, Denecker G, Festjens N, Gabriels SOFIE, Parthoens E, D’Herde K, et al. Macrophages use different internalization mechanisms to clear apoptotic and necrotic cells. Cell Death Differ. 2006;13(12):2011–22.

    Article  CAS  PubMed  Google Scholar 

  40. Bicknell GR, Snowden RT, Cohen GM. Formation of high molecular mass DNA fragments is a marker of apoptosis in the human leukaemic cell line, U937. J Cell Sci. 1994;107(9):2483–9.

    Article  CAS  PubMed  Google Scholar 

  41. Higuchi Y. Glutathione depletion-induced chromosomal DNA fragmentation associated with apoptosis and necrosis. J Cell Mol Med. 2004;8(4):455–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Singh NP. A simple method for accurate estimation of apoptotic cells. Exp Cell Res. 2000;256(1):328–37.

    Article  CAS  PubMed  Google Scholar 

  43. Khodavirdipour A, Zarean R, Safaralizadeh R. Evaluation of the anti-cancer effect of Syzygium cumini ethanolic extract on HT-29 colorectal cell line. J Gastrointest Cancer. 2020.

  44. Oberhammer F, Wilson JW, Dive C, Morris ID, Hickman JA, Wakeling AE, et al. Apoptotic death in epithelial cells: cleavage of DNA to 300 and/or 50 kb fragments prior to or in the absence of internucleosomal fragmentation. EMBO J. 1993;12(9):3679–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Page MT, Quintana PJ, Ligutti JA, Sabbadini RA. Cell death in cultured adult rat cardiomyocytes: use of the comet assay to distinguish apoptosis from necrosis. BAM-PADOVA. 2000;10(4):159–70.

    Google Scholar 

  46. Collins AR. The comet assay. Principles, applications, and limitations. Methods Mol Biol (Clifton, NJ). 2002;203:163–77.

    CAS  Google Scholar 

  47. Olive PL, Frazer G, Banáth JP. Radiation-induced apoptosis measured in TK6 human B lymphoblast cells using the comet assay. Radiat Res. 1993;136(1):130–6.

    Article  CAS  PubMed  Google Scholar 

  48. McNair FI, Marples B, West CM, Moore JV. A comet assay of DNA damage and repair in K562 cells after photodynamic therapy using haematoporphyrin derivative, methylene blue and meso-tetrahydroxyphenylchlorin. Br J Cancer. 1997;75(12):1721–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Yasuhara S, Zhu Y, Matsui T, Tipirneni N, Yasuhara Y, Kaneki M, et al. Comparison of comet assay, electron microscopy, and flow cytometry for detection of apoptosis. J Histochem Cytochem. 2003;51(7):873–85.

    Article  CAS  PubMed  Google Scholar 

  50. Zamai L, Falcieri E, Zauli G, Cataldi A, Vitale M. Optimal detection of apoptosis by flow cytometry depends on cell morphology. Cytometry. 1993;14(8):891–7.

    Article  CAS  PubMed  Google Scholar 

  51. Nicoletti I, Migliorati G, Pagliacci MC, Grignani F, Riccardi C. A rapid and simple method for measuring thymocyte apoptosis by propidium iodide staining and flow cytometry. J Immunol Methods. 1991;139(2):271–9.

    Article  CAS  PubMed  Google Scholar 

  52. Telford WG, King LE, Fraker PJ. Comparative evaluation of several DNA binding dyes in the detection of apoptosis-associated chromatin degradation by flow cytometry. Cytometry. 1992;13(2):137–43.

    Article  CAS  PubMed  Google Scholar 

  53. Ferlini C, Di Cesare S, Rainaldi G, Malorni W, Samoggia P, Biselli R, et al. Flow cytometric analysis of the early phases of apoptosis by cellular and nuclear techniques. Cytometry. 1996;24(2):106–15.

    Article  CAS  PubMed  Google Scholar 

  54. Bertho ÁL, Santiago MA, Coutinho SG. Flow cytometry in the study of cell death. Mem Inst Oswaldo Cruz. 2000;95(3):429–33.

    Article  CAS  PubMed  Google Scholar 

  55. Gavrieli Y, Sherman Y, Ben-Sasson SA. Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. J Cell Biol. 1992;119(3):493–501.

    Article  CAS  PubMed  Google Scholar 

  56. Wijsman JH, Jonker RR, Keijzer R, Van de Velde CJ, Cornelisse CJ, Van Dierendonck JH. A new method to detect apoptosis in paraffin sections: in situ end-labeling of fragmented DNA. J Histochem Cytochem. 1993;41(1):7–12.

    Article  CAS  PubMed  Google Scholar 

  57. Ansari B, Coates PJ, Greenstein BD, Hall PA. In situ end-labelling detects DNA strand breaks in apoptosis and other physiological and pathological states. J Pathol. 1993;170(1):1–8.

    Article  CAS  PubMed  Google Scholar 

  58. Negoescu A, Lorimier P, Labat-Moleur F, Drouet C, Robert C, Guillermet C, et al. In situ apoptotic cell labeling by the TUNEL method: improvement and evaluation on cell preparations. J Histochem Cytochem. 1996;44(9):959–68.

    Article  CAS  PubMed  Google Scholar 

  59. Gorczyca W, Gong J, Darzynkiewicz Z. Detection of DNA strand breaks in individual apoptotic cells by the in situ terminal deoxynucleotidyl transferase and nick translation assays. Cancer Res. 1993;53(8):1945–51.

    CAS  PubMed  Google Scholar 

  60. Mundle SD, Gao XZ, Khan S, Gregory SA, Preisler HD, Raza A. Two in situ labeling techniques reveal different patterns of DNA fragmentation during spontaneous apoptosis in vivo and induced apoptosis in vitro. Anticancer Res. 1995;15(5B):1895–904.

    CAS  PubMed  Google Scholar 

  61. Fan TJ, Han LH, Cong RS, Liang J. Caspase family proteases and apoptosis. Acta Biochim Biophys Sin. 2005;37(11):719–27.

    Article  CAS  PubMed  Google Scholar 

  62. Sun XM, MacFarlane M, Zhuang J, Wolf BB, Green DR, Cohen GM. Distinct caspase cascades are initiated in receptor-mediated and chemical-induced apoptosis. J Biol Chem. 1999;274(8):5053–60.

    Article  CAS  PubMed  Google Scholar 

  63. Logue SE, Martin SJ. Caspase activation cascades in apoptosis. Biochem Soc Trans. 2008;36(1):1–9.

    Article  CAS  PubMed  Google Scholar 

  64. Porter AG, Jänicke RU. Emerging roles of caspase-3 in apoptosis. Cell Death Differ. 1999;6(2):99–104.

    Article  CAS  PubMed  Google Scholar 

  65. Duan WR, Garner DS, Williams SD, Funckes-Shippy CL, Spath IS, Blomme EA. Comparison of immunohistochemistry for activated caspase-3 and cleaved cytokeratin 18 with the TUNEL method for quantification of apoptosis in histological sections of PC-3 subcutaneous xenografts. J Pathol. 2003;199(2):221–8.

    Article  CAS  PubMed  Google Scholar 

  66. Haupt S, Berger M, Goldberg Z, Haupt Y. Apoptosis-the p53 network. J Cell Sci. 2003;116(20):4077–85.

    Article  CAS  PubMed  Google Scholar 

  67. Vousden KH, Lu X. Live or let die: the cell’s response to p53. Nat Rev Cancer. 2002;2(8):594–604.

    Article  CAS  PubMed  Google Scholar 

  68. Fridman JS, Lowe SW. Control of apoptosis by p53. Oncogene. 2003;22(56):9030–40.

    Article  CAS  PubMed  Google Scholar 

  69. Ravanat C, Archipoff G, Beretz A, Freund G, Cazenave JP, Freyssinet JM. Use of annexin-V to demonstrate the role of phosphatidylserine exposure in the maintenance of haemostatic balance by endothelial cells. Biochem J. 1992;282(1):7–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Verhoven B, Krahling S, Schlegel RA, Williamson P. Regulation of phosphatidylserine exposure and phagocytosis of apoptotic T lymphocytes. Cell Death Differ. 1999;6(3):262–70.

    Article  CAS  PubMed  Google Scholar 

  71. Vermes I, Haanen C, Steffens-Nakken H, Reutellingsperger C. A novel assay for apoptosis flow cytometric detection of phosphatidylserine expression on early apoptotic cells using fluorescein labelled annexin V. J Immunol Methods. 1995;184(1):39–52.

    Article  CAS  PubMed  Google Scholar 

  72. van Heerde WL, Robert-Offerman S, Dumont E, Hofstra L, Doevendans PA, Smits JF, et al. Markers of apoptosis in cardiovascular tissues: focus on Annexin V. Cardiovasc Res. 2000;45(3):549–59.

    Article  PubMed  Google Scholar 

  73. Roth GA, Krenn C, Brunner M, Moser B, Ploder M, Spittler A, et al. Elevated serum levels of epithelial cell apoptosis-specific cytokeratin 18 neoepitope m30 in critically ill patients. Shock. 2004;22(3):218–20.

    Article  CAS  PubMed  Google Scholar 

  74. Morsi HM, Leers MP, Jäger W, Björklund V, Radespiel-Tröger M, El Kabarity H, et al. The patterns of expression of an apoptosis-related CK18 neoepitope, the bcl-2 proto-oncogene, and the Ki67 proliferation marker in normal, hyperplastic, and malignant endometrium. Int J Gynecol Pathol. 2000;19(2):118–26.

    Article  CAS  PubMed  Google Scholar 

  75. Leers MP, Kölgen W, Björklund V, Bergman T, Tribbick G, Persson B, et al. Immunocytochemical detection and mapping of a cytokeratin 18 neo-epitope exposed during early apoptosis. J Pathol. 1999;187(5):567–72.

    Article  CAS  PubMed  Google Scholar 

  76. Grassi A, Susca M, Ferri S, Gabusi E, D’errico A, Farina G, et al. Detection of the M30 neoepitope as a new tool to quantify liver apoptosis: timing and patterns of positivity on frozen and paraffin-embedded sections. Am J Clin Pathol. 2004;121(2):211–9.

    Article  CAS  PubMed  Google Scholar 

  77. Kadyrov M, Kaufmann P, Huppertz B. Expression of a cytokeratin 18 neo-epitope is a specific marker for trophoblast apoptosis in human placenta. Placenta. 2001;22(1):44–8.

    Article  CAS  PubMed  Google Scholar 

  78. Shinohara T, Ohshima K, Murayama H, Kikuchi M, Yamashita Y, Shirakusa T. Apoptosis and proliferation in gastric carcinoma: the association with histological type. Histopathology. 1996;29(2):123–9.

    Article  CAS  PubMed  Google Scholar 

  79. Xu HY, Yang YL, Guan XL, Song G, Jiang AM, Shi LJ. Expression of regulating apoptosis gene and apoptosis index in primary liver cancer. World J Gastroenterol. 2000;6(5):721–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Burcombe R, Wilson GD, Dowsett M, Khan I, Richman PI, Daley F, et al. Evaluation of Ki-67 proliferation and apoptotic index before, during and after neoadjuvant chemotherapy for primary breast cancer. Breast Cancer Res. 2006;8(3):1–10.

    Article  Google Scholar 

  81. Naresh KN, Lakshminarayanan K, Pai SA, Borges AM. Apoptosis index is a predictor of metastatic phenotype in patients with early stage squamous carcinoma of the tongue: a hypothesis to support this paradoxical association. Cancer. 2001;91(3):578–84.

    Article  CAS  PubMed  Google Scholar 

Download references

Contribution

AK, SJ, MP, and SH.K contributed equally. R.S and MY.A jointly supervised and revised the final manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Yousef Alikhani.

Ethics declarations

Conflict of Interest

The authors declare that there is no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khodavirdipour, A., Piri, M., Jabbari, S. et al. Apoptosis Detection Methods in Diagnosis of Cancer and Their Potential Role in Treatment: Advantages and Disadvantages: a Review. J Gastrointest Canc 52, 422–430 (2021). https://doi.org/10.1007/s12029-020-00576-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12029-020-00576-9

Keywords

Navigation