Skip to main content
Log in

Onion Extract Encapsulated on Nano Chitosan: a Promising Anticancer Agent

  • Original Research
  • Published:
Journal of Gastrointestinal Cancer Aims and scope Submit manuscript

An Author Correction to this article was published on 25 January 2021

This article has been updated

Abstract

Background

Onion (Allium cepa) is very rich in nutritional and pharmaceutical components, such as saponins, tannins, alkaloids, steroids, and phenols. Many recent researches approved its anticancer activity against various cancer cell lines. In this paper, we attempt to improve its anticancer activity with encapsulation on nano chitosan. On the best of our knowledge, this is considered the first study that tries to increase the anticancer activity of the onion extract on nano chitosan.

Methods

An aqueous extract of the onion was prepared and the extract efficiency as anticancer agent was enhanced by encapsulating the extract on nano chitosan. The antioxidant capacity and the functional ingredients such as alkaloid, tannin, saponin, steroid, phenolic, and flavonoid in either the free or encapsulated one were estimated. Also, the anticancer activity of the two extracts was tested against different cell lines.

Results

Encapsulation of the extract on chitosan nano particles decreased IC50 in different cell lines and induced apoptosis through decreasing BCL-2 level and increasing caspase-3 and caspase-9 activity.

Conclusion

Onion extract encapsulated on nano chitosan can be used as protective agents from cancer, antitumor, or act synergistically with the cancer chemotherapy. This greatly participates in improving the use of natural products in cancer therapy instead of chemotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

References

  1. George BP, Abrahamse H, Parimelazhagan T. Caspase dependent apoptotic activity of Rubus fairholmianus Gard. on MCF-7 human breast cancer cell lines. J Appl Biomed. 2016;14:211–9. https://doi.org/10.1016/j.jab.2016.02.001.

    Article  Google Scholar 

  2. Majolo F, Delwing LKOB, Marmitt DJ, Bustamante-Filho IC, Goettert MI. Medicinal plants and bioactive natural compounds for cancer treatment: important advances for drug discovery. Phytochem Lett. 2019;31:196–207. https://doi.org/10.1016/j.phytol.2019.04.003.

    Article  CAS  Google Scholar 

  3. Tantawy AA, Naguib DM. Arginine, histidine and tryptophan: a new hope for cancer immunotherapy. Pharma Nutr. 2019;8:100149. https://doi.org/10.1016/j.phanu.2019.100149.

    Article  Google Scholar 

  4. Khattak KF, Rahman TU. Analysis of vegetable’s peels as a natural source of vitamins and minerals. Int Food Res J. 2017;24(1):292–7.

    CAS  Google Scholar 

  5. Shrivastava S, Ganesh N. Tumor inhibition and cytotoxicity assay by aqueous extract of onion (Allium cepa) & garlic (Allium sativum): an in-vitro analysis. Int J Phytoremediation. 2010;2:80–4. https://doi.org/10.5138/ijpm.2010.0975.0185.02013.

    Article  Google Scholar 

  6. Rafiqa S, Kaula R, Sofia SA, Bashira N, Nazirb F, Nayik GA. Citrus peel as a source of functional ingredient: a review. J Saudi Soc Agric Sci. 2018;17:351–8. https://doi.org/10.1016/j.jssas.2016.07.0061.

    Article  Google Scholar 

  7. Naguib DM, Tantawy AA. Anticancer effect of some fruits peels aqueous extracts. Orient Pharm Exp Med. 2019;19:1–6. https://doi.org/10.1007/s13596-019-00398-6.

    Article  Google Scholar 

  8. Gupta S, Kumar P. Drug delivery using nanocarriers: Indian perspective. Proc Natl Acad Sci, India, Sect B Biol Sci. 2012;82(Suppl 1):167. https://doi.org/10.1007/s40011-012-0080-7.

    Article  CAS  Google Scholar 

  9. Mohammed M, Syeda J, Wasan K, Wasan E. An overview of chitosan nanoparticles and its application in non-parenteral drug delivery. Pharmaceutics. 2017;9(4):53. https://doi.org/10.3390/pharmaceutics9040053.

    Article  CAS  Google Scholar 

  10. Trease GE, Evans WC. Phenols and phenolic glycosides. In: Trease and Evans Pharmacology and Bikere. London: Tindall; 1996. p. 832–6.

    Google Scholar 

  11. Pallab K, Tapan B, Tapas P, Ramen K. Estimation of total flavonoids content (TPC) and antioxidant activities of methanolic whole plant extract of Biophytum sensitivum Linn. J Drug Del Ther. 2013;3:33–7. https://doi.org/10.22270/jddt.v3i4.546.

    Article  Google Scholar 

  12. Julkunen-Tiitto R. Phenolic constituents in the leaves of northern willows: methods for the analysis of certain phenolics. J Agric Food Chem. 1985;33:213–7.

    Article  CAS  Google Scholar 

  13. Shaim C, Moorthi PV, Kutty SN. In vitro anticancer activity of 5’ fluorouracil coated chitosan nanoparticle. Int J Curr Pharm Res. 2016;8(4):6–8. https://doi.org/10.22159/ijcpr.2016v8i4.15267.

    Article  CAS  Google Scholar 

  14. Prieto P, Pineda M, Aguilar M. Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: specific application to the determination of vitamin E. Anal Biochem. 1999;269:337–41. https://doi.org/10.1006/abio.1999.4019.

    Article  CAS  PubMed  Google Scholar 

  15. Oyaizu M. Studies on products of browning reaction: antioxidant activities of products of browning reaction prepared from glucosamine. Jpn J Nutr. 1986;44:307–15.

    Article  CAS  Google Scholar 

  16. Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983;65:55–63.

    Article  CAS  Google Scholar 

  17. Reed JC, Miyashita T, Takayama S, Wang HG, Sato T, Krajewski S, et al. BCL2 family proteins : regulator of cell death involved in the pathogenesis of cancer and resistance to therapy. J Cell Biochem. 1996;60:23–32.

    Article  CAS  Google Scholar 

  18. Casciola-Rosen L, Nicholson DW, Chong T, Rowan KR, Thornberry NA, Miller DK, et al. Apopain/CPP32 cleaves proteins that are essential for cellular repair: a fundamental principle of apoptotic death. J Exp Med. 1996;183:1957–64.

    Article  CAS  Google Scholar 

  19. Cardone MH, Roy N, Stennicke HR, Salvesen GS, Franke TF, Stanbridge E, et al. Regulation of cell death protease caspase-9 by phosphorylation. Science. 1998;282(5392):1318–21. https://doi.org/10.1126/science.282.5392.1318.

    Article  CAS  PubMed  Google Scholar 

  20. Levesque R. SPSS programming and data management: guide for SPSS and SAS users. Fourth ed. Chicago: SPSS Inc.; 2007. p. 60606–6412.

    Google Scholar 

  21. Greenwell M, Rahman PKSM. Medicinal plants: their use in anticancer treatment. Int J Pharm Sci Res. 2015;6(10):4103–12. https://doi.org/10.13040/IJPSR.0975-8232.6(10).4103-12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. John AMSP, Ankem MK, Damodaran C. Oxidative stress: a promising target for chemoprevention. Curr Pharmacol Rep. 2016;2:73–81. https://doi.org/10.1007/s40495-016-0052-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Selvi SR, Kumar RZA, Bhaskar A. Phytochemical investigation and in vitro antioxidant activity of Citrus sinensis peel extract. Pharm Lett. 2016;8:159–65.

    Google Scholar 

  24. Han DG, Cho SS, Kwak JH, Yoon IS. Medicinal plants and phytochemicals for diabetes mellitus: pharmacokinetic characteristics and herb-drug interactions. J Pharm Investig. 2019;46(6):603–12. https://doi.org/10.1007/s40005-019-00440-4.

    Article  CAS  Google Scholar 

  25. Abyadeh M, Aghajani M, Gohari Mahmoudabad A, Amani A. Preparation and optimization of chitosan/pDNA nanoparticles using electrospray. Proc Natl Acad Sci, India, Sect B Biol Sci. 2019;89:931–7. https://doi.org/10.1007/s40011-018-1009-6.

    Article  CAS  Google Scholar 

  26. Bhatnagar P, Pant AB, Shukla Y, Chaudhari B, Kumar P, Gupta KC. Bromelain nanoparticles protect against 7,12-dimethylbenz[a] anthracene induced skin carcinogenesis in mouse model. Eur J Pharm Biopharm. 2015;91:35–46. https://doi.org/10.1016/j.ejpb.2015.01.015.

    Article  CAS  PubMed  Google Scholar 

  27. Kumar SR, Priyatharshni S, Babu VN, Mangalaraj D, Viswanathan C, Kannan S, et al. Quercetin conjugated superparamagnetic magnetite nanoparticles for in-vitro analysis of breast cancer cell line for chemotherapy applications. J Colloid Interface Sci. 2014;436:234–42. https://doi.org/10.1016/j.jcis.2014.08.064.

    Article  CAS  PubMed  Google Scholar 

  28. Jyoti K, Kaur K, Pandey RS, Jain UK, Chandra R, Madan J. Inhalable nanostructured lipid particles of 9-bromo-noscapine, a tubulin-binding cytotoxic agent: In vitro and in vivo studies. J Colloid Interface Sci. 2015;445:219–30. https://doi.org/10.1016/j.jcis.2014.12.092.

    Article  CAS  PubMed  Google Scholar 

  29. Mirhadi E, Nassirli H, Malaekeh-Nikouei. An updated review on therapeutic effects of nanoparticle-based formulations of saffron components (safranal, crocin, and crocetin). J Pharm Investig. 2020;50:47–58. https://doi.org/10.1007/s40005-019-00435-1.

    Article  Google Scholar 

  30. Abas AM, Naguib DM. Effect of germination on anticancer activity of Trigonella foenum seeds extract. Biocatal Agric Biotechnol. 2019;18:101067. https://doi.org/10.1016/j.bcab.2019.101067.

    Article  Google Scholar 

  31. Bhavsar C, Momin M, Gharat S, Omri A. Functionalized and graft copolymers of chitosan and its pharmaceutical applications. Expert Opin Drug Deliv. 2017;14:1189–204.

    Article  CAS  Google Scholar 

  32. Hoop M, Mushtaq F, Hurter C, Chen XZ, Nelson BJ, Pane S. A smart multifunctional drug delivery nanoplatform for targeting cancer cells. Nanoscale. 2016;8:12723–8. https://doi.org/10.1080/17425247.2017.1241230.

    Article  CAS  PubMed  Google Scholar 

  33. Wimardhani YS, Suniarti DF, Freisleben HJ, Wanandi SI, Siregar NC, Ikeda MA. Chitosan exerts anticancer activity through induction of apoptosis and cell cycle arrest in oral cancer cells. J Oral Sci. 2014;56(2):119–26. https://doi.org/10.2334/josnusd.56.119.

    Article  CAS  PubMed  Google Scholar 

  34. Asiri SM, Khan FA, Bozkurt A. Synthesis of chitosan nanoparticles, chitosan-bulk, chitosan nanoparticles conjugated with glutaraldehyde with strong anti-cancer proliferative capabilities. Artif Cells Nanomed Biotechnol. 2018;46(S3):S1152–61.

    Article  CAS  Google Scholar 

  35. Ramasamy T, Ruttala HB, Chitrapriya N, Poudal BK, Choi JY, Kim ST, et al. Engineering of cell microenvironment-responsive polypeptide nanovehicle co-encapsulating a synergistic combination of small molecules for effective chemotherapy in solid tumors. Acta Biomater. 2017;48:131–43. https://doi.org/10.1016/j.actbio.2016.10.034.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This paper was self-funded and we did not take any fund from any organization or person.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deyala M. Naguib.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

This research article does not contain any studies with human participants or animals performed by any of the authors.

Consent for Publication

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: The original version of this article unfortunately contained a mistake in the author group section. The correct name of the first author is “Abdulrahman Ali Alzandi.”

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alzandi, A.A., Naguib, D.M. & Abas, AS.M. Onion Extract Encapsulated on Nano Chitosan: a Promising Anticancer Agent. J Gastrointest Canc 53, 211–216 (2022). https://doi.org/10.1007/s12029-020-00561-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12029-020-00561-2

Keywords

Navigation