Skip to main content

Advertisement

Log in

DNA Methylation Profiling of hTERT Gene Alongside with the Telomere Performance in Gastric Adenocarcinoma

  • Review Article
  • Published:
Journal of Gastrointestinal Cancer Aims and scope Submit manuscript

Abstract

Purpose

Epigenetic modification including of DNA methylation, histone acetylation, histone methylation, histon phosphorylation and non-coding RNA can impress the gene expression and genomic stability and cause different types of malignancies and also main human disorder. Conspicuously, the epigenetic alteration special DNA methylation controls telomere length, telomerase activity and also function of different genes particularly hTERT expression. Telomeres are important in increasing the lifespan, health, aging, and the development and progression of some diseases like cancer.

Methods

This review provides an assessment of the epigenetic alterations of telomeres, telomerase and repression of its catalytic subunit, hTERT and function of long non-coding RNAs such as telomeric-repeat containing RNA (TERRA) in carcinogenesis and tumorgenesis of gastric cancer.

Results

hTERT expression is essential and indispensable in telomerase activation through immortality and malignancies and also plays an important role in maintaining telomere length. Telomeres and telomerase have been implicated in regulating epigenetic factors influencing certain gene expression. Correspondingly, these changes in the sub telomere and telomere regions are affected by the shortening of telomere length and increased telomerase activity and hTERT gene expression have been observed in many cancers, remarkably in gastric cancer.

Conclusion

Epigenetic alteration and regulation of hTERT gene expression are critical in controlling telomerase activity and its expression.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

GC:

Gastric cancer

HDGC:

Hereditary diffuse gastric cancer

FAP:

Familial adenomatous polyposis

DNMTs:

DNA methyltransferases

MBDs:

Methyl-CpG binding domain proteins

HMT:

Histone methyltransferases

HDMs:

Histone demethylases

HATs:

Histone acetyltransferases

HDACs:

Histone deacetylases

HDACI:

Histone deacetylation inhibitor

ROS:

Reactive oxygen species

TRF:

Telomere Restriction Fragment Assay

aTL:

Absolute telomere length

ALT:

Alternative lengthening of telomeres

TSA:

Trichostatin A

TERRA:

Telomeric repeat-containing RNA

hTERT:

Human telomerase reverse transcriptase

HP1a:

Heterochromatin protein 1

siRNA:

Small interfering RNA

References

  1. Sitarz R, Skierucha M, Mielko J, Offerhaus GJA, Maciejewski R, Polkowski WP. Gastric cancer: epidemiology, prevention, classification, and treatment. Cancer Manag Res. 2018;10:239–48.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Mukaisho K-i, Nakayama T, Hagiwara T, Hattori T, Sugihara H. Two distinct etiologies of gastric cardia adenocarcinoma: interactions among pH, helicobacter pylori, and bile acids. Front Microbiol. 2015;6:412.

    PubMed  PubMed Central  Google Scholar 

  3. Rodrigues MF, Guerra MR, Rodrigues de Alvarenga AV, de Oliveira Souza DZ, Cupolilo SMN. Helicobacter pylori infection and gastric cancer precursor lesions: prevalence and associated factors in a reference laboratory in southeastern Brazil. Arq Gastroenterol. 2019;56(4):419–24.

    PubMed  Google Scholar 

  4. Carcas LP. Gastric cancer review. J Carcinog. 2014;13:14.

    PubMed  PubMed Central  Google Scholar 

  5. Fontana E, Smyth EC. Novel targets in the treatment of advanced gastric cancer: a perspective review. Ther Adv Med Oncol. 2016;8(2):113–25.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Zabaleta J. Multifactorial etiology of gastric cancer. In: Cancer Epigenetics: Springer; 2012. p. 411–35.

  7. Sun W, Yan L. Gastric cancer: current and evolving treatment landscape. Chin J Cancer. 2016;35(1):83.

    PubMed  PubMed Central  Google Scholar 

  8. Smith MG, Hold GL, Tahara E, El-Omar EM. Cellular and molecular aspects of gastric cancer. World J Gastroenterol: WJG. 2006;12(19):2979–90.

    CAS  PubMed  Google Scholar 

  9. Oliveira C, Pinheiro H, Figueiredo J, Seruca R, Carneiro F. Familial gastric cancer: genetic susceptibility, pathology, and implications for management. Lancet Oncol. 2015;16(2):e60–70.

    PubMed  Google Scholar 

  10. Fu D-G. Epigenetic alterations in gastric cancer. Mol Med Rep. 2015;12(3):3223–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Sharma S, Kelly TK, Jones PA. Epigenetics in cancer. Carcinogenesis. 2010;31(1):27–36.

    CAS  PubMed  Google Scholar 

  12. Waddington CH. The epigenotype. Endeavour. 1942;1:18–20.

    Google Scholar 

  13. Holliday R, Ho T. DNA methylation and epigenetic inheritance. Methods. 2002;27(2):179–83.

    CAS  PubMed  Google Scholar 

  14. Riggs AD, Porter TN. Overview of epigenetic mechanisms. Cold Spring Harbor Monograph Archive. 1996;32:29–45.

    CAS  Google Scholar 

  15. Yang W, Mok M, Li M, Kang W, Wang H, Chan A, et al. Epigenetic silencing of GDF1 disrupts SMAD signaling to reinforce gastric cancer development. Oncogene. 2016;35(16):2133–44.

    CAS  PubMed  Google Scholar 

  16. Kulis M, Esteller M. DNA methylation and cancer. In: Advances in genetics, vol. 70: Elsevier; 2010. p. 27–56.

  17. Julsing JR, Peters GJ. Methylation of DNA repair genes and the efficacy of DNA targeted anticancer treatment. Oncology Discovery. 2014;2(1):3.

    Google Scholar 

  18. Denis H, Ndlovu MN, Fuks F. Regulation of mammalian DNA methyltransferases: a route to new mechanisms. EMBO Rep. 2011;12(7):647–56.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Langroudi MP, Nikbakhsh N, Samadani AA, Fattahi S, Taheri H, Shafaei S, et al. FAT4 hypermethylation and grade dependent downregulation in gastric adenocarcinoma. Journal of cell communication and signaling. 2017;11(1):69–75.

    Google Scholar 

  20. Samadani AA, Nikbakhsh N, Pilehchian M, Fattahi S, Akhavan-Niaki H. Epigenetic changes of CDX2 in gastric adenocarcinoma. J Cell Commun Signal. 2016;10(4):267–72.

    PubMed  PubMed Central  Google Scholar 

  21. Hirst M, Marra MA. Epigenetics and human disease. Int J Biochem Cell Biol. 2009;41(1):136–46.

    CAS  PubMed  Google Scholar 

  22. Qu Y, Dang S, Hou P. Gene methylation in gastric cancer. Clin Chim Acta. 2013;424:53–65.

    CAS  PubMed  Google Scholar 

  23. Loh M, Liem N, Vaithilingam A, Lim PL, Sapari NS, Elahi E, et al. DNA methylation subgroups and the CpG island methylator phenotype in gastric cancer: a comprehensive profiling approach. BMC Gastroenterol. 2014;14(1):55.

    PubMed  PubMed Central  Google Scholar 

  24. Mulero-Navarro S, Esteller M. Epigenetic biomarkers for human cancer: the time is now. Crit Rev Oncol Hematol. 2008;68(1):1–11.

    PubMed  Google Scholar 

  25. Mersfelder EL, Parthun MR. The tale beyond the tail: histone core domain modifications and the regulation of chromatin structure. Nucleic Acids Res. 2006;34(9):2653–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Chervona Y, Costa M. Histone modifications and cancer: biomarkers of prognosis? Am J Cancer Res. 2012;2(5):589.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Park YS, Jin MY, Kim YJ, Yook JH, Kim BS, Jang SJ. The global histone modification pattern correlates with cancer recurrence and overall survival in gastric adenocarcinoma. Ann Surg Oncol. 2008;15(7):1968–76.

    PubMed  Google Scholar 

  28. Hellebrekers DM, Griffioen AW, van Engeland M. Dual targeting of epigenetic therapy in cancer. Biochimica et Biophysica Acta (BBA)-Reviews on Cancer. 2007;1775(1):76–91.

    CAS  Google Scholar 

  29. Taverna SD, Li H, Ruthenburg AJ, Allis CD, Patel DJ. How chromatin-binding modules interpret histone modifications: lessons from professional pocket pickers. Nat Struct Mol Biol. 2007;14(11):1025–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Wanczyk M, Roszczenko K, Marcinkiewicz K, Bojarczuk K, Kowara M, Winiarska M. HDACi–going through the mechanisms. Front Biosci. 2011;16:340–59.

    CAS  Google Scholar 

  31. Nishikawaji T, Akiyama Y, Shimada S, Kojima K, Kawano T, Eishi Y, et al. Oncogenic roles of the SETDB2 histone methyltransferase in gastric cancer. Oncotarget. 2016;7(41):67251–65.

    PubMed  PubMed Central  Google Scholar 

  32. Yang W-Y, Gu J-L, Zhen T-M. Recent advances of histone modification in gastric cancer. J Cancer Res Ther. 2014;10(8):240.

    PubMed  Google Scholar 

  33. Yu Z, Zeng J, Liu H, Wang T, Yu Z, Chen J. Role of HDAC1 in the progression of gastric cancer and the correlation with lncRNAs. Oncol Lett. 2019;17(3):3296–304.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Kim JG, Takeshima H, Niwa T, Rehnberg E, Shigematsu Y, Yoda Y, et al. Comprehensive DNA methylation and extensive mutation analyses reveal an association between the CpG island methylator phenotype and oncogenic mutations in gastric cancers. Cancer Lett. 2013;330(1):33–40.

    CAS  PubMed  Google Scholar 

  35. Samadani AA, Nikbakhsh N, Taheri H, Shafaee S, Fattahi S, Langroudi MP, et al. cdx1/2 and klf5 expression and epigenetic modulation of sonic hedgehog signaling in gastric adenocarcinoma. Pathol Oncol Res. 2019:1–8.

  36. Zhou Z, Lin Z, Pang X, Tariq MA, Ao X, Li P, et al. Epigenetic regulation of long non-coding RNAs in gastric cancer. Oncotarget. 2018;9(27):19443–58.

    PubMed  Google Scholar 

  37. Hamai Y, Oue N, Mitani Y, Nakayama H, Ito R, Matsusaki K, et al. DNA hypermethylation and histone hypoacetylation of the HLTF gene are associated with reduced expression in gastric carcinoma. Cancer Sci. 2003;94(8):692–8.

    CAS  PubMed  Google Scholar 

  38. O'sullivan RJ, Karlseder J. Telomeres: protecting chromosomes against genome instability. Nat Rev Mol Cell Biol. 2010;11(3):171–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. de Lange T. Shelterin-mediated telomere protection. Annu Rev Genet. 2018;52:223–47.

    PubMed  Google Scholar 

  40. Janoušková E, Nečasová I, Pavloušková J, Zimmermann M, Hluchý M, Marini V, et al. Human Rap1 modulates TRF2 attraction to telomeric DNA. Nucleic Acids Res. 2015;43(5):2691–700.

    PubMed  PubMed Central  Google Scholar 

  41. Diotti R, Loayza D. Shelterin complex and associated factors at human telomeres. Nucleus. 2011;2(2):119–35.

    PubMed  PubMed Central  Google Scholar 

  42. Chen Y. The structural biology of the shelterin complex. Biol Chem. 2019;400(4):457–66.

    CAS  PubMed  Google Scholar 

  43. Miyachi K, Fujita M, Tanaka N, Sasaki K, Sunagawa M. Correlation between telomerase activity and telomeric-repeat binding factors in gastric cancer. J Exp Clin Cancer Res. 2002;21(2):269–75.

    CAS  PubMed  Google Scholar 

  44. Vaquero-Sedas MI, Vega-Palas MA. Assessing the epigenetic status of human telomeres. Cells. 2019;8(9):1050.

    CAS  PubMed Central  Google Scholar 

  45. Wentzensen IM, Mirabello L, Pfeiffer RM, Savage SA. The association of telomere length and cancer: a meta-analysis. Cancer Epidemiology and Prevention Biomarkers. 2011;20(6):1238–50.

    CAS  Google Scholar 

  46. Alter BP, Giri N, Savage SA, Rosenberg PS. Cancer in dyskeratosis congenita. Blood. 2009;113(26):6549–57.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Cawthon RM. Telomere length measurement by a novel monochrome multiplex quantitative PCR method. Nucleic Acids Res. 2009;37(3):e21.

    PubMed  PubMed Central  Google Scholar 

  48. O'Callaghan NJ, Fenech M. A quantitative PCR method for measuring absolute telomere length. Biol Proced Online. 2011;13(1):3.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Aviv A, Hunt SC, Lin J, Cao X, Kimura M, Blackburn E. Impartial comparative analysis of measurement of leukocyte telomere length/DNA content by southern blots and qPCR. Nucleic Acids Res. 2011;39(20):e134.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Hofmann JN, Hutchinson AA, Cawthon R, Liu C-S, Lynch SM, Lan Q, et al. Telomere length varies by DNA extraction method: implications for epidemiologic research. Cancer Epidemiol Prev Biomarkers. 2014;23(6):1129–30.

    Google Scholar 

  51. Watson JD. Origin of concatemeric T7DNA. Nat New Biol. 1972;239(94):197–201.

    CAS  PubMed  Google Scholar 

  52. De Vitis M, Berardinelli F, Sgura A. Telomere length maintenance in cancer: at the crossroad between telomerase and alternative lengthening of telomeres (ALT). Int J Mol Sci. 2018;19(2):606.

    PubMed Central  Google Scholar 

  53. Flynn RL, Cox KE, Jeitany M, Wakimoto H, Bryll AR, Ganem NJ, et al. Alternative lengthening of telomeres renders cancer cells hypersensitive to ATR inhibitors. Science. 2015;347(6219):273–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Lovejoy CA, Li W, Reisenweber S, Thongthip S, Bruno J, De Lange T, et al. Loss of ATRX, genome instability, and an altered DNA damage response are hallmarks of the alternative lengthening of telomeres pathway. PLoS Genet. 2012;8(7):e1002772.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Wong LH, McGhie JD, Sim M, Anderson MA, Ahn S, Hannan RD, et al. ATRX interacts with H3. 3 in maintaining telomere structural integrity in pluripotent embryonic stem cells. Genome Res. 2010;20(3):351–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Galati A, Micheli E, Cacchione S. Chromatin structure in telomere dynamics. Front Oncol. 2013;3:46.

    PubMed  PubMed Central  Google Scholar 

  57. Peters AH, O'Carroll D, Scherthan H, Mechtler K, Sauer S, Schöfer C, et al. Loss of the Suv39h histone methyltransferases impairs mammalian heterochromatin and genome stability. Cell. 2001;107(3):323–37.

    CAS  PubMed  Google Scholar 

  58. García-Cao M, O'Sullivan R, Peters AH, Jenuwein T, Blasco MA. Epigenetic regulation of telomere length in mammalian cells by the Suv39h1 and Suv39h2 histone methyltransferases. Nat Genet. 2004;36(1):94–9.

    PubMed  Google Scholar 

  59. Wang J, Cohen AL, Letian A, Tadeo X, Moresco JJ, Liu J, et al. The proper connection between shelterin components is required for telomeric heterochromatin assembly. Genes Dev. 2016;30(7):827–39.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Benetti R, García-Cao M, Blasco MA. Telomere length regulates the epigenetic status of mammalian telomeres and subtelomeres. Nat Genet. 2007;39(2):243–50.

    CAS  PubMed  Google Scholar 

  61. Jones PA, Baylin SB. The fundamental role of epigenetic events in cancer. Nat Rev Genet. 2002;3(6):415–28.

    CAS  PubMed  Google Scholar 

  62. Hu H, Li B, Duan S. The alteration of subtelomeric DNA methylation in aging-related diseases. Front Genet. 2018:9.

  63. Le Berre G, Hossard V, Riou J-F, Guieysse-Peugeot A-L. Repression of TERRA expression by Subtelomeric DNA methylation is dependent on NRF1 binding. Int J Mol Sci. 2019;20(11):2791.

    PubMed Central  Google Scholar 

  64. Daniel M, Peek GW, Tollefsbol TO. Regulation of the human catalytic subunit of telomerase (hTERT). Gene. 2012;498(2):135–46.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Blasco MA. The epigenetic regulation of mammalian telomeres. Nat Rev Genet. 2007;8(4):299–309.

    CAS  PubMed  Google Scholar 

  66. Sampl S, Pramhas S, Stern C, Preusser M, Marosi C, Holzmann K. Expression of telomeres in astrocytoma WHO grade 2 to 4: TERRA level correlates with telomere length, telomerase activity, and advanced clinical grade. Transl Oncol. 2012;5(1):56–IN4.

    PubMed  PubMed Central  Google Scholar 

  67. Ng LJ, Cropley JE, Pickett HA, Reddel RR, Suter CM. Telomerase activity is associated with an increase in DNA methylation at the proximal subtelomere and a reduction in telomeric transcription. Nucleic Acids Res. 2009;37(4):1152–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Barthel FP, Wei W, Tang M, Martinez-Ledesma E, Hu X, Amin SB, et al. Systematic analysis of telomere length and somatic alterations in 31 cancer types. Nat Genet. 2017;49(3):349–57.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Choi YH. Linoleic acid-induced growth inhibition of human gastric epithelial adenocarcinoma AGS cells is associated with down-regulation of prostaglandin E2 synthesis and telomerase activity. J Cancer Prev. 2014;19(1):31–8.

    PubMed  PubMed Central  Google Scholar 

  70. Zhu J, Zhao Y, Wang S. Chromatin and epigenetic regulation of the telomerase reverse transcriptase gene. Protein Cell. 2010;1(1):22–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Gigek CO, Leal MF, Silva PNO, Lisboa LCF, Lima EM, Calcagno DQ, et al. hTERT methylation and expression in gastric cancer. Biomarkers. 2009;14(8):630–6.

    CAS  PubMed  Google Scholar 

  72. Kim W, Ludlow AT, Min J, Robin JD, Stadler G, Mender I, et al. Regulation of the human telomerase gene TERT by telomere position effect—over long distances (TPE-OLD): implications for aging and cancer. PLoS Biol. 2016;14(12):e2000016.

    PubMed  PubMed Central  Google Scholar 

  73. He B, Xiao Y-F, Tang B, Wu Y-Y, Hu C-J, Xie R, et al. hTERT mediates gastric cancer metastasis partially through the indirect targeting of ITGB1 by microRNA-29a. Sci Rep. 2016;6:21955.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Ding D, Zhou J, Wang M, Cong YS. Implications of telomere-independent activities of telomerase reverse transcriptase in human cancer. FEBS J. 2013;280(14):3205–11.

    CAS  PubMed  Google Scholar 

  75. Wu Y, Li G, He D, Yang F, He G, He L, et al. Telomerase reverse transcriptase methylation predicts lymph node metastasis and prognosis in patients with gastric cancer. Onco Targets Ther. 2016;9:279.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Wang Z, Xu J, Geng X, Zhang W. Analysis of DNA methylation status of the promoter of human telomerase reverse transcriptase in gastric carcinogenesis. Arch Med Res. 2010;41(1):1–6.

    PubMed  Google Scholar 

  77. Jie M-M, Chang X, Zeng S, Liu C, Liao G-B, Wu Y-R, et al. Diverse regulatory manners of human telomerase reverse transcriptase. Cell Commun Signal. 2019;17(1):63.

    PubMed  PubMed Central  Google Scholar 

  78. Cong Y-S, Bacchetti S. Histone deacetylation is involved in the transcriptional repression of hTERT in normal human cells. J Biol Chem. 2000;275(46):35665–8.

    CAS  PubMed  Google Scholar 

  79. Meeran SM, Patel SN, Tollefsbol TO. Sulforaphane causes epigenetic repression of hTERT expression in human breast cancer cell lines. PLoS One. 2010;5(7):e11457.

    PubMed  PubMed Central  Google Scholar 

  80. Ramachandran PV, Ignacimuthu S. RNA interference as a plausible anticancer therapeutic tool. Asian Pac J Cancer Prev. 2012;13(6):2445–52.

    PubMed  Google Scholar 

  81. Vahidi S, Sorayayi S, Mohammadzadeh M, Hosseini-Asl SS. The effect of human telomerase reverse transcriptase repression on the increasing cell viability and alterations of cell cycle in gastric Cancer cell Line. Govaresh. 2018;23(3):152–8.

    Google Scholar 

  82. Gonzalo S, Jaco I, Fraga MF, Chen T, Li E, Esteller M, et al. DNA methyltransferases control telomere length and telomere recombination in mammalian cells. Nat Cell Biol. 2006;8(4):416–24.

    CAS  PubMed  Google Scholar 

  83. Schoeftner S, Blasco MA. Developmentally regulated transcription of mammalian telomeres by DNA-dependent RNA polymerase II. Nat Cell Biol. 2008;10(2):228–36.

    CAS  PubMed  Google Scholar 

  84. Azzalin CM, Reichenbach P, Khoriauli L, Giulotto E, Lingner J. Telomeric repeat–containing RNA and RNA surveillance factors at mammalian chromosome ends. Science. 2007;318(5851):798–801.

    CAS  PubMed  Google Scholar 

  85. Redon S, Reichenbach P, Lingner J. The non-coding RNA TERRA is a natural ligand and direct inhibitor of human telomerase. Nucleic Acids Res. 2010;38(17):5797–806.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Wyatt HD, Lobb DA, Beattie TL. Characterization of physical and functional anchor site interactions in human telomerase. Mol Cell Biol. 2007;27(8):3226–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Arnoult N, Van Beneden A, Decottignies A. Telomere length regulates TERRA levels through increased trimethylation of telomeric H3K9 and HP1α. Nat Struct Mol Biol. 2012;19(9):948–56.

    CAS  PubMed  Google Scholar 

  88. Montero JJ, López-Silanes I, Megías D, Fraga MF, Castells-García Á, Blasco MA. TERRA recruitment of polycomb to telomeres is essential for histone trymethylation marks at telomeric heterochromatin. Nat Commun. 2018;9(1):1548.

    PubMed  PubMed Central  Google Scholar 

  89. Kreilmeier T, Mejri D, Hauck M, Kleiter M, Holzmann K. Telomere transcripts target telomerase in human cancer cells. Genes. 2016;7(8):46.

    PubMed Central  Google Scholar 

  90. Farnung BO, Brun CM, Arora R, Lorenzi LE, Azzalin CM. Telomerase efficiently elongates highly transcribing telomeres in human cancer cells. PLoS One. 2012;7(4):e35714.

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Neri F, Rapelli S, Krepelova A, Incarnato D, Parlato C, Basile G, et al. Intragenic DNA methylation prevents spurious transcription initiation. Nature. 2017;543(7643):72–7.

    CAS  PubMed  Google Scholar 

  92. Hashimoto H, Zhang X, Vertino PM, Cheng X. The mechanisms of generation, recognition, and erasure of DNA 5-methylcytosine and thymine oxidations. J Biol Chem. 2015;290(34):20723–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Deng Z, Campbell AE, Lieberman PM. TERRA, CpG methylation, and telomere heterochromatin: lessons from ICF syndrome cells. Cell Cycle. 2010;9(1):69–74.

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Cusanelli E, Chartrand P. Telomeric repeat-containing RNA TERRA: a noncoding RNA connecting telomere biology to genome integrity. Front Genet. 2015;6.

  95. Arora R, Lee Y, Wischnewski H, Brun CM, Schwarz T, Azzalin CM. RNaseH1 regulates TERRA-telomeric DNA hybrids and telomere maintenance in ALT tumour cells. Nat Commun. 2014;5:5220.

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Cusanelli E, Romero CAP, Chartrand P. Telomeric noncoding RNA TERRA is induced by telomere shortening to nucleate telomerase molecules at short telomeres. Mol Cell. 2013;51(6):780–91.

    CAS  PubMed  Google Scholar 

  97. Deng Z, Wang Z, Xiang C, Molczan A, Baubet V, Conejo-Garcia J, et al. Formation of telomeric repeat-containing RNA (TERRA) foci in highly proliferating mouse cerebellar neuronal progenitors and medulloblastoma. J Cell Sci. 2012;125(18):4383–94.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Seyedeh Elham Norollahi or Ali Akbar Samadani.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vahidi, S., Norollahi, S.E., Agah, S. et al. DNA Methylation Profiling of hTERT Gene Alongside with the Telomere Performance in Gastric Adenocarcinoma. J Gastrointest Canc 51, 788–799 (2020). https://doi.org/10.1007/s12029-020-00427-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12029-020-00427-7

Keywords

Navigation