Skip to main content

Advertisement

Log in

TNFSF9 Is a Prognostic Biomarker and Correlated with Immune Infiltrates in Pancreatic Cancer

  • Original Research
  • Published:
Journal of Gastrointestinal Cancer Aims and scope Submit manuscript

Abstract

Background

TNFSF9 gene has been found to play an anti-tumor role and regulate the function of immune cells. However, the prognostic role of TNFSF9 in pancreatic cancer and its relationship with immune cell infiltration have not been studied.

Methods

We used Oncomine, UALCAN, and GEPIA databases to analyze the expression of TNFSF9 in pancreatic cancer. We used Kaplan-Meier plotters, GEPIA, and UALCAN to evaluate the effect of TNFSF9 on clinical prognosis. We further used TIMER to study the correlation between TNFSF9 and cancer immune infiltrate cells. In addition, we used GEPIA to analyze the correlation between TNFSF9 expression and gene markers of immune infiltrate cells.

Results

TNFSF9 mRNA expression level was remarkably increased in pancreatic cancer than that in normal tissues (both P < 0.05). In addition, high TNFSF9 expression was significantly related to poor overall survival (OS) and relapse-free survival (RFS) in pancreatic cancer (OS HR = 2.02, P = 0.0012; RFS HR = 2.63, P = 0.022). Moreover, high TNFSF9 expression in pancreatic cancer patients was associated with worse OS in stage 1 to 2 but not stage 3 and stage 4. Specifically, TNFSF9 expression and CD8+ T cell infiltration of pancreatic cancer was negatively correlated. TNFSF9 expression showed strong correlations with M1 macrophages in pancreatic cancer.

Conclusions

Our results suggest that TNFSF9 is associated with prognosis and CD8+ T cell infiltration levels in patients with pancreatic cancer. Further, TNFSF9 expression potentially contributes to the modulation of M1 polarization of macrophages. These findings indicate that TNFSF9 can be serves as a prognostic biomarker in determining the prognosis of pancreatic cancer and is associated with different types of phenotypes of immune cell infiltration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Siegel RL, Miller K, DandJemal A. Cancer statistics, 2018. CA Cancer J Clin. 2018;68:7–30.

    PubMed  Google Scholar 

  2. Carr R, MandFernandez-Zapico ME. Toward personalized TGFbeta inhibition for pancreatic cancer. EMBO Mol Med. 2019:e11414.

  3. Daley D, Mani VR, Mohan N, Akkad N, Pandian G, Savadkar S, et al. NLRP3 signaling drives macrophage-induced adaptive immune suppression in pancreatic carcinoma. J Exp Med. 2017;214:1711–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. De Monte L, Reni M, Tassi E, Clavenna D, Papa I, Recalde H, et al. Intratumor T helper type 2 cell infiltrate correlates with cancer-associated fibroblast thymic stromal lymphopoietin production and reduced survival in pancreatic cancer. J Exp Med. 2011;208:469–78.

    PubMed  PubMed Central  Google Scholar 

  5. Ochi A, Nguyen AH, Bedrosian AS, Mushlin HM, Zarbakhsh S, Barilla R, et al. MyD88 inhibition amplifies dendritic cell capacity to promote pancreatic carcinogenesis via Th2 cells. J Exp Med. 2012;209:1671–87.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Fukunaga A, Miyamoto M, Cho Y, Murakami S, Kawarada Y, Oshikiri T, et al. CD8+ tumor-infiltrating lymphocytes together with CD4+ tumor-infiltrating lymphocytes and dendritic cells improve the prognosis of patients with pancreatic adenocarcinoma. Pancreas. 2004;28:e26–31.

    PubMed  Google Scholar 

  7. Wang X, Luo G, Zhang K, Cao J, Huang C, Jiang T, et al. Hypoxic tumor-derived Exosomal miR-301a mediates M2 macrophage polarization via PTEN/PI3Kgamma to promote pancreatic Cancer metastasis. Cancer Res. 2018;78:4586–98.

    CAS  PubMed  Google Scholar 

  8. Deshmukh SK, Tyagi N, Khan MA, Srivastava SK, Al-Ghadhban A, Dugger K, et al. Gemcitabine treatment promotes immunosuppressive microenvironment in pancreatic tumors by supporting the infiltration, growth, and polarization of macrophages. Sci Rep. 2018;8:12000.

    PubMed  PubMed Central  Google Scholar 

  9. Shen YL, Gan Y, Gao HF, Fan YC, Wang Q, Yuan H, et al. TNFSF9 exerts an inhibitory effect on hepatocellular carcinoma. J Dig Dis. 2017;18:395–403.

    CAS  PubMed  Google Scholar 

  10. Dharmadhikari B, Wu M, Abdullah NS, Rajendran S, Ishak ND, Nickles E, et al. CD137 and CD137L signals are main drivers of type 1, cell-mediated immune responses. Oncoimmunology. 2016;5:e1113367.

    PubMed  Google Scholar 

  11. Shao ZandSchwarz H. CD137 ligand, a member of the tumor necrosis factor family, regulates immune responses via reverse signal transduction. J Leukoc Biol. 2011;89:21–9.

    Google Scholar 

  12. Langstein J, Michel J, Fritsche J, Kreutz M, Andreesen RandSchwarz H. CD137 (ILA/4-1BB), a member of the TNF receptor family, induces monocyte activation via bidirectional signaling. J Immunol. 1998;160:2488–94.

    CAS  PubMed  Google Scholar 

  13. Maniar A, Zhang X, Lin W, Gastman BR, Pauza CD, Strome SE, et al. Human gammadelta T lymphocytes induce robust NK cell-mediated antitumor cytotoxicity through CD137 engagement. Blood. 2010;116:1726–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Mardiana S, John LB, Henderson MA, Slaney CY, von Scheidt B, Giuffrida L, et al. A multifunctional role for adjuvant Anti-4-1BB therapy in augmenting antitumor response by chimeric antigen receptor T cells. Cancer Res. 2017;77:1296–309.

    CAS  PubMed  Google Scholar 

  15. Thum E, Shao ZandSchwarz H. CD137, implications in immunity and potential for therapy. Front Biosci (Landmark Ed). 2009;14:4173–88.

    CAS  Google Scholar 

  16. Kwon B. CD137-CD137 ligand interactions in inflammation. Immune Netw. 2009;9:84–9.

    PubMed  PubMed Central  Google Scholar 

  17. Dimberg J, Hugander AandWagsater D. Expression of CD137 and CD137 ligand in colorectal cancer patients. Oncol Rep. 2006;15:1197–200.

    CAS  PubMed  Google Scholar 

  18. Salih HR, Kosowski SG, Haluska VF, Starling GC, Loo DT, Lee F, et al. Constitutive expression of functional 4-1BB (CD137) ligand on carcinoma cells. J Immunol. 2000;165:2903–10.

    CAS  PubMed  Google Scholar 

  19. Qian Y, Pei D, Cheng T, Wu C, Pu X, Chen X, et al. CD137 ligand-mediated reverse signaling inhibits proliferation and induces apoptosis in non-small cell lung cancer. Med Oncol. 2015;32:44.

    PubMed  Google Scholar 

  20. Rhodes DR, Kalyana-Sundaram S, Mahavisno V, Varambally R, Yu J, Briggs BB, et al. Oncomine 3.0: genes, pathways, and networks in a collection of 18,000 cancer gene expression profiles. Neoplasia. 2007;9:166–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Lanczky A, Nagy A, Bottai G, Munkacsy G, Szabo A, Santarpia L, et al. miRpower: a web-tool to validate survival-associated miRNAs utilizing expression data from 2178 breast cancer patients. Breast Cancer Res Treat. 2016;160:439–46.

    CAS  PubMed  Google Scholar 

  22. Li T, Fan J, Wang B, Traugh N, Chen Q, Liu JS, et al. TIMER: a web server for comprehensive analysis of tumor-infiltrating immune cells. Cancer Res. 2017;77:e108–10.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Tang Z, Li C, Kang B, Gao G, Li CandZhang Z. GEPIA: a web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res. 2017;45:W98–W102.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Siemers NO, Holloway JL, Chang H, Chasalow SD, Ross-MacDonald PB, Voliva CF, et al. Genome-wide association analysis identifies genetic correlates of immune infiltrates in solid tumors. PLoS One. 2017;12:e0179726.

    PubMed  PubMed Central  Google Scholar 

  25. Chandrashekar DS, Bashel B, Balasubramanya SAH, Creighton CJ, Ponce-Rodriguez I, Chakravarthi B, et al. UALCAN: a portal for facilitating tumor subgroup gene expression and survival analyses. Neoplasia. 2017;19:649–58.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Azimi F, Scolyer RA, Rumcheva P, Moncrieff M, Murali R, McCarthy SW, et al. Tumor-infiltrating lymphocyte grade is an independent predictor of sentinel lymph node status and survival in patients with cutaneous melanoma. J Clin Oncol. 2012;30:2678–83.

    PubMed  Google Scholar 

  27. Ohtani H. Focus on TILs: prognostic significance of tumor infiltrating lymphocytes in human colorectal cancer. Cancer Immun. 2007;7:4.

    PubMed  PubMed Central  Google Scholar 

  28. Murray PJ. Macrophage polarization. Annu Rev Physiol. 2017;79:541–66.

    CAS  PubMed  Google Scholar 

  29. Fridlender ZG, Sun J, Kim S, Kapoor V, Cheng G, Ling L, et al. Polarization of tumor-associated neutrophil phenotype by TGF-beta: "N1" versus "N2" TAN. Cancer Cell. 2009;16:183–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Kamisawa T, Wood LD, Itoi TandTakaori K. Pancreatic cancer. Lancet. 2016;388:73–85.

    CAS  PubMed  Google Scholar 

  31. Miller KD, Siegel RL, Lin CC, Mariotto AB, Kramer JL, Rowland JH, et al. Cancer treatment and survivorship statistics, 2016. CA Cancer J Clin. 2016;66:271–89.

    PubMed  Google Scholar 

  32. Siegel RL, Miller K, DandJemal A. Cancer statistics, 2019. CA Cancer J Clin. 2019;69:7–34.

    PubMed  Google Scholar 

  33. Ock CY, Hwang JE, Keam B, Kim SB, Shim JJ, Jang HJ, et al. Genomic landscape associated with potential response to anti-CTLA-4 treatment in cancers. Nat Commun. 2017;8:1050.

    PubMed  PubMed Central  Google Scholar 

  34. Vogelstein B, Papadopoulos N, Velculescu VE, Zhou S, Diaz LA Jr, Kinzler KW. Cancer genome landscapes. Science. 2013;339:1546–58.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Ye JX, Zhang YT, Zhang XG, Ren D, MandChen WC. Recombinant attenuated Salmonella harboring 4-1BB ligand gene enhances cellular immunity. Vaccine. 2009;27:1717–23.

    CAS  PubMed  Google Scholar 

  36. Melero I, Shuford WW, Newby SA, Aruffo A, Ledbetter JA, Hellstrom KE, et al. Monoclonal antibodies against the 4-1BB T-cell activation molecule eradicate established tumors. Nat Med. 1997;3:682–5.

    CAS  PubMed  Google Scholar 

  37. Longo DL. Tumor heterogeneity and personalized medicine. N Engl J Med. 2012;366:956–7.

    CAS  PubMed  Google Scholar 

  38. Grimmig T, Gasser M, Moench R, Zhu LJ, Nawalaniec K, Callies S, et al. Expression of tumor-mediated CD137 ligand in human colon cancer indicates dual signaling effects. Oncoimmunology. 2019;8:e1651622.

    PubMed  PubMed Central  Google Scholar 

  39. Zhang N, Sadun RE, Arias RS, Flanagan ML, Sachsman SM, Nien YC, et al. Targeted and untargeted CD137L fusion proteins for the immunotherapy of experimental solid tumors. Clin Cancer Res. 2007;13:2758–67.

    CAS  PubMed  Google Scholar 

  40. Zhang H, Merchant MS, Chua KS, Khanna C, Helman LJ, Telford B, et al. Tumor expression of 4-1BB ligand sustains tumor lytic T cells. Cancer Biol Ther. 2003;2:579–86.

    CAS  PubMed  Google Scholar 

  41. Ino Y, Yamazaki-Itoh R, Shimada K, Iwasaki M, Kosuge T, Kanai Y, et al. Immune cell infiltration as an indicator of the immune microenvironment of pancreatic cancer. Br J Cancer. 2013;108:914–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Yuan CH, Sun XM, Zhu CL, Liu SP, Wu L, Chen H, et al. Amphiregulin activates regulatory T lymphocytes and suppresses CD8+ T cell-mediated anti-tumor response in hepatocellular carcinoma cells. Oncotarget. 2015;6:32138–53.

    PubMed  PubMed Central  Google Scholar 

  43. Bhattacharya N, Yuan R, Prestwood TR, Penny HL, DiMaio MA, Reticker-Flynn NE, et al. Normalizing microbiota-induced retinoic acid deficiency stimulates protective CD8(+) T cell-mediated immunity in colorectal Cancer. Immunity. 2016;45:641–55.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Ye J, Zou MM, Li P, Lin XJ, Jiang QW, Yang Y, et al. Oxymatrine and Cisplatin synergistically enhance anti-tumor immunity of CD8(+) T cells in non-small cell lung Cancer. Front Oncol. 2018;8:631.

    PubMed  PubMed Central  Google Scholar 

  45. den Breems NY, Eftimie R. The re-polarisation of M2 and M1 macrophages and its role on cancer outcomes. J Theor Biol. 2016;390:23–39.

    Google Scholar 

  46. Hiraoka N, Onozato K, Kosuge TandHirohashi S. Prevalence of FOXP3+ regulatory T cells increases during the progression of pancreatic ductal adenocarcinoma and its premalignant lesions. Clin Cancer Res. 2006;12:5423–34.

    CAS  PubMed  Google Scholar 

  47. Facciabene A, Motz G, TandCoukos G. T-regulatory cells: key players in tumor immune escape and angiogenesis. Cancer Res. 2012;72:2162–71.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Data Availability Statement

All data generated or analyzed during this study are included in this published article.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. The manuscript was written by Jiao Wu. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Zheng Jiang.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, J., Wang, Y. & Jiang, Z. TNFSF9 Is a Prognostic Biomarker and Correlated with Immune Infiltrates in Pancreatic Cancer. J Gastrointest Canc 52, 150–159 (2021). https://doi.org/10.1007/s12029-020-00371-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12029-020-00371-6

Keywords

Navigation