Microbiome Dysbiosis and Predominant Bacterial Species as Human Cancer Biomarkers

Abstract

Purpose

To evaluate bacterial agents as cancer biomarkers.

Methods and Results

Various bacterial species have been demonstrated to involve in human cancers. However, the data is not enough for better understanding of predominant specific species. Application of a rapid and early-diagnostic, cost-effective, non-invasive, and inclusive method is a crucial approach for obtaining valid results. The role of Helicobacter pylori (H. pylori) in gastric and duodenal cancer has been confirmed. From investigation among previous publications, we attempted to make it clear which bacterial species significantly and specifically increase in various cancer types. It was unraveled that there is significant change in Granulicatella adiacens (G. adiacens) in lung cancer (LC), Fusobacterium nucleatum (F. nucleatum) in colorectal cancer (CRC), H. pylori and Porphyromonas gingivalis (P. gingivalis) in pancreatic cancer, and Streptococcus spp. in oral cancer.

Conclusion

Alteration in the cell cycle by means of different mechanisms such as inflammation, alteration in cell signaling, invasion and immune evasion, specific niche colonization, induction of DNA damage and mutation, expression of some microRNAs, and enhancing epigenetic effects are the most common mechanisms employed by bacterial species.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Chen Y-L, Mo X-Q, Huang G-R, Huang Y-Q, Xiao J, Zhao L-J, et al. Gene polymorphisms of pathogenic Helicobacter pylori in patients with different types of gastrointestinal diseases. World J Gastroenterol. 2016;22(44):9718–26.

    CAS  Article  Google Scholar 

  2. 2.

    Eusebi LH, Zagari RM, Bazzoli F. Epidemiology of Helicobacter pylori infection. Helicobacter. 2014;19(s1):1–5.

    Article  Google Scholar 

  3. 3.

    Farrell JJ, Zhang L, Zhou H, Chia D, Elashoff D, Akin D, et al. Variations of oral microbiota are associated with pancreatic diseases including pancreatic cancer. Gut. 2011:gutjnl–2011-300784.

  4. 4.

    Mira-Pascual L, Cabrera-Rubio R, Ocon S, Costales P, Parra A, Suarez A, et al. Microbial mucosal colonic shifts associated with the development of colorectal cancer reveal the presence of different bacterial and archaeal biomarkers. J Gastroenterol. 2015;50(2):167–79.

    CAS  Article  Google Scholar 

  5. 5.

    Yu J, Feng Q, Wong SH, Zhang D, yi Liang Q, Qin Y, et al. Metagenomic analysis of faecal microbiome as a tool towards targeted non-invasive biomarkers for colorectal cancer. Gut. 2015:gutjnl–2015-309800.

  6. 6.

    Michaud DS. Role of bacterial infections in pancreatic cancer. Carcinogenesis. 2013;34(10):2193–7.

    CAS  Article  Google Scholar 

  7. 7.

    Michaud DS, Izard J. Microbiota, oral microbiome, and pancreatic cancer. Cancer J. 2014;20(3):203–6.

    CAS  Article  Google Scholar 

  8. 8.

    Ahn J, Segers S, Hayes RB. Periodontal disease, Porphyromonas g ingivalis serum antibody levels and orodigestive cancer mortality. Carcinogenesis. 2012;33(5):1055–8.

    CAS  Article  Google Scholar 

  9. 9.

    O’keefe SJ. Diet, microorganisms and their metabolites, and colon cancer. Nat Rev Gastroenterol Hepatol. 2016;13(12):691–706.

    Article  Google Scholar 

  10. 10.

    Chow SC, Gowing SD, Cools-Lartigue JJ, Chen CB, Berube J, Yoon HW, et al. Gram negative bacteria increase non-small cell lung cancer metastasis via toll-like receptor 4 activation and mitogen-activated protein kinase phosphorylation. Int J Cancer. 2015;136(6):1341–50.

    CAS  Article  Google Scholar 

  11. 11.

    Abdelouhab K, Rafa H, Toumi R, Bouaziz S, Medjeber O, Touil-Boukoffa C. Mucosal intestinal alteration in experimental colitis correlates with nitric oxide production by peritoneal macrophages: effect of probiotics and prebiotics. Immunopharmacol Immunotoxicol. 2012;34(4):590–7.

    CAS  Article  Google Scholar 

  12. 12.

    Ahasan A, Agazzi A, Invernizzi G, Bontempo V, Savoini G. The beneficial role of probiotics in monogastric animal nutrition and health. J Dairy Vet Anim Res. 2015;2(4):1–20.

    Google Scholar 

  13. 13.

    Al Kassaa I, Hober D, Hamze M, Chihib N, Drider D. Antiviral potential of lactic acid bacteria and their bacteriocins. Probiotics Antimicrob Proteins. 2014;6(3–4):177–85.

    Article  Google Scholar 

  14. 14.

    AlFaleh K, Anabrees J. Probiotics for prevention of necrotizing enterocolitis in preterm infants. Evid-Based Child Health: Cochrane Rev J. 2014;9(3):584–671.

    Article  Google Scholar 

  15. 15.

    Bron PA, Van Baarlen P, Kleerebezem M. Emerging molecular insights into the interaction between probiotics and the host intestinal mucosa. Nat Rev Microbiol. 2012;10(1):66–78.

    CAS  Article  Google Scholar 

  16. 16.

    Cagliero P, Marini E, Cena C, Veglia F, Guardamagna O. Probiotics supplementation and antioxidant activity in children affected by primary hyperlipidemia. Atherosclerosis. 2014;235(2):e266–7.

    Article  Google Scholar 

  17. 17.

    Sheflin AM, Whitney AK, Weir TL. Cancer-promoting effects of microbial dysbiosis. Curr Oncol Rep. 2014;16(10):406.

    Article  Google Scholar 

  18. 18.

    Sobhani I, Amiot A, Le Baleur Y, Levy M, Auriault M-L, Van Nhieu JT, et al. Microbial dysbiosis and colon carcinogenesis: could colon cancer be considered a bacteria-related disease? Ther Adv Gastroenterol. 2013;6(3):215–29.

    Article  Google Scholar 

  19. 19.

    Brenner DR, McLaughlin JR, Hung RJ. Previous lung diseases and lung cancer risk: a systematic review and meta-analysis. PLoS One. 2011;6(3):e17479.

    CAS  Article  Google Scholar 

  20. 20.

    Cameron SJ, Lewis KE, Huws SA, Hegarty MJ, Lewis PD, Pachebat JA, et al. A pilot study using metagenomic sequencing of the sputum microbiome suggests potential bacterial biomarkers for lung cancer. PLoS One. 2017;12(5):e0177062.

    Article  Google Scholar 

  21. 21.

    Rybojad P, Los R, Sawicki M, Tabarkiewicz J, Malm A. Anaerobic bacteria colonizing the lower airways in lung cancer patients. Folia Histochem Cytobiol. 2011;49(2):263–6.

    Article  Google Scholar 

  22. 22.

    Tjalsma H, Boleij A, Marchesi JR, Dutilh BE. A bacterial driver–passenger model for colorectal cancer: beyond the usual suspects. Nat Rev Microbiol. 2012;10(8):575–82.

    CAS  Article  Google Scholar 

  23. 23.

    Flanagan L, Schmid J, Ebert M, Soucek P, Kunicka T, Liska V, et al. Fusobacterium nucleatum associates with stages of colorectal neoplasia development, colorectal cancer and disease outcome. Eur J Clin Microbiol Infect Dis. 2014;33(8):1381–90.

    CAS  Article  Google Scholar 

  24. 24.

    Ahn J, Sinha R, Pei Z, Dominianni C, Wu J, Shi J, et al. Human gut microbiome and risk for colorectal cancer. J Natl Cancer Inst. 2013;105(24):1907–11.

    CAS  Article  Google Scholar 

  25. 25.

    Ahn J, Chen CY, Hayes RB. Oral microbiome and oral and gastrointestinal cancer risk. Cancer Causes Control. 2012;23(3):399–404.

    Article  Google Scholar 

  26. 26.

    Yoshizawa JM, Schafer CA, Schafer JJ, Farrell JJ, Paster BJ, Wong DT. Salivary biomarkers: toward future clinical and diagnostic utilities. Clin Microbiol Rev. 2013;26(4):781–91.

    CAS  Article  Google Scholar 

  27. 27.

    Edgren G, Hjalgrim H, Rostgaard K, Norda R, Wikman A, Melbye M, et al. Risk of gastric cancer and peptic ulcers in relation to ABO blood type: a cohort study. Am J Epidemiol. 2010;172(11):1280–5.

    Article  Google Scholar 

  28. 28.

    Risch HA, Yu H, Lu L, Kidd MS. ABO blood group, Helicobacter pylori seropositivity, and risk of pancreatic cancer: a case–control study. J Natl Cancer Inst. 2010;102(7):502–5.

    CAS  Article  Google Scholar 

  29. 29.

    Hayes RB, Ahn J, Fan X, Peters BA, Ma Y, Yang L, et al. Association of oral microbiome with risk for incident head and neck squamous cell cancer. JAMA Oncol. 2018;4(3):358–65.

    Article  Google Scholar 

  30. 30.

    Chapkin RS. Robert Chapkin on Relationships Between the Gut Microbiome, Diet, and Colorectal Cancer. Oncol. 2018 15;32(5).

  31. 31.

    Biragyn A, Ferrucci L. Gut dysbiosis: a potential link between increased cancer risk in ageing and inflammaging. Lancet Oncol. 2018;19(6):e295–304.

    Article  Google Scholar 

Download references

Funding

This study was supported by Islamic Azad University, Tehran, Iran.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Abdolmajid Ghasemian.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shirazi, M.S.R., Al-Alo, K.Z.K., Al-Yasiri, M.H. et al. Microbiome Dysbiosis and Predominant Bacterial Species as Human Cancer Biomarkers. J Gastrointest Canc 51, 725–728 (2020). https://doi.org/10.1007/s12029-019-00311-z

Download citation

Keywords

  • Bacterial biomarkers
  • Cancer
  • Microbiome
  • Dysbiosis