Skip to main content

Advertisement

Log in

The Prognostic Value of Serum Semaphorin3A and VEGF Levels in Patients with Metastatic Colorectal Cancer

  • Original Research
  • Published:
Journal of Gastrointestinal Cancer Aims and scope Submit manuscript

Abstract

Purpose

Despite new treatment options in metastatic colorectal cancer (mCRC), new prognostic markers are still needed to determine optimal chemoregimen especially for anti-angiogenesis drugs. In this study, we evaluated the serum semaphorin and VEGF-A levels as prognostic factors in patients with mCRC.

Methods

Patients with diagnosed mCRC who were treated with first-line bevacizumab plus chemotherapy were included in the study. Venous blood samples of 37 patients with metastatic colon cancer were taken, and serum semaphorin 3A and VEGF-A levels were studied in pre-treatment and the 1st and third months after the treatment was initiated.

Results

Totally, 37 patients were enrolled in the study. The patients’ mean age was 62 years. Twenty-eight (49%) of the patients were male, and 19 (51%) were female. Serum semaphorin3A (sema3A) levels of the patients were 5.4 ± 7.4 ng/ml before the treatment, 3.5 ± 3.3 ng/ml at the first month, and 3.5 ± 3.7 ng/ml at the third month. Serum VEGF-A levels were 27.7 ± 32.9 ng/l before the treatment, 23.1 ± 28.1 ng/l at the first month, and 28.9 ± 30.2 ng/l at the third month. There was no significant correlation between the survival and pre-treatment VEGF-A level (p = 0.064). Overall survival (OS) was statistically significantly higher in patients with pre-treatment semaphorin 3A levels below 5.4 ng/ml than higher than 5.4 ng/ml (10.5 months vs 4.5 months, respectively, HR 0.23, 95% CI 19.635–11,391, p = 0.012).

Conclusion

Pre-treatment semaphorin 3A level can be a prognostic marker for the mCRC patients who were treated with bevacizumab in patients with metastatic colorectal cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin. 2015;65:87–108. https://doi.org/10.3322/caac.21262.

    Article  PubMed  Google Scholar 

  2. Karaman S, Leppanen VM, Alitalo K. Vascular endothelial growth factor signaling in development and disease. Development. 2018;145:dev151019. https://doi.org/10.1242/dev.151019.

    Article  CAS  PubMed  Google Scholar 

  3. Simons M, Gordon E, Claesson-Welsh L. Mechanisms and regulation of endothelial VEGF receptor signalling. Nat Rev Mol Cell Biol. 2016;17:611–25. https://doi.org/10.1038/nrm.2016.87.

    Article  CAS  PubMed  Google Scholar 

  4. Kramer I, Lipp HP. Bevacizumab, a humanized anti-angiogenic monoclonal antibody for the treatment of colorectal cancer. J Clin Pharm Ther. 2007;32:1–14. https://doi.org/10.1111/j.1365-2710.2007.00800.x.

    Article  CAS  PubMed  Google Scholar 

  5. Hurwitz H, Fehrenbacher L, Hainsworth JD, Heim W, Berlin J, Holmgren E, et al. Bevacizumab in combination with fluorouracil and leucovorin: an active regimen for first-line metastatic colorectal cancer. J Clin Oncol. 2005;23:3502–8. https://doi.org/10.1200/JCO.2005.10.017.

    Article  CAS  PubMed  Google Scholar 

  6. Heinemann V, Von Weikersthal LF, Decker T, et al. FOLFIRI plus cetuximab versus FOLFIRI plus bevacizumab as first-line treatment for patients with metastatic colorectal cancer (FIRE-3): a randomised, open-label, phase 3 trial. Lancet Oncol. 2014;15(10):1065–75. https://doi.org/10.1016/S1470-2045(14)70330-4.

    Article  CAS  PubMed  Google Scholar 

  7. Heinemann V, Rivera F, O’Neil BH, et al. A study-level meta-analysis of efficacy data from head-to-head first-line trials of epidermal growth factor receptor inhibitors versus bevacizumab in patients with RAS wild-type metastatic colorectal cancer. Eur J Cancer. 2016;67:11–20. https://doi.org/10.1016/j.ejca.2016.07.019.

    Article  CAS  PubMed  Google Scholar 

  8. Passardi A, Nanni O, Tassinari D, Turci D, Cavanna L, Fontana A, et al. Effectiveness of bevacizumab added to standard chemotherapy in metastatic colorectal cancer: final results for first-line treatment from the ITACa randomized clinical trial. Ann Oncol. 2015;26:1201–7. https://doi.org/10.1093/annonc/mdv130.

    Article  CAS  PubMed  Google Scholar 

  9. Hei Yuan HS, Katyal S, Anderson JE. A mechanism for semaphorin-induced apoptosis: DNA damage of endothelial and myogenic cells in primary cultures from skeletal muscle. Oncotarget. 2018;9:22618–30. https://doi.org/10.18632/oncotarget.25200.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Sumi C, Hirose N, Yanoshita M, Takano M, Nishiyama S, Okamoto Y, et al. Semaphorin 3A inhibits inflammation in chondrocytes under excessive mechanical stress. Mediat Inflamm. 2018;2018:5703651. https://doi.org/10.1155/2018/5703651.

    Article  CAS  Google Scholar 

  11. Kaneko S, Iwanami A, Nakamura M, Kishino A, Kikuchi K, Shibata S, et al. A selective Sema3A inhibitor enhances regenerative responses and functional recovery of the injured spinal cord. Nat Med. 2006;12:1380–9. https://doi.org/10.1038/nm1505.

    Article  CAS  PubMed  Google Scholar 

  12. Lepelletier Y, Moura IC, Hadj-Slimane R, et al. Immunosuppressive role of semaphorin-3A on T cell proliferation is mediated by inhibition of actin cytoskeleton reorganization. Eur J Immunol. 2006;36:1782–93. https://doi.org/10.1002/eji.200535601.

    Article  CAS  PubMed  Google Scholar 

  13. Gaur P, Bielenberg DR, Samuel S, Bose D, Zhou Y, Gray MJ, et al. Role of class 3 semaphorins and their receptors in tumor growth and angiogenesis. Clin Cancer Res. 2009;15:6763–70. https://doi.org/10.1158/1078-0432.CCR-09-1810.

    Article  CAS  PubMed  Google Scholar 

  14. Staton CA. Class 3 semaphorins and their receptors in physiological and pathological angiogenesis. Biochem Soc Trans. 2011;39:1565–70. https://doi.org/10.1042/BST20110654.

    Article  CAS  PubMed  Google Scholar 

  15. Maione F, Molla F, Meda C, Latini R, Zentilin L, Giacca M, et al. Semaphorin 3A is an endogenous angiogenesis inhibitor that blocks tumor growth and normalizes tumor vasculature in transgenic mouse models. J Clin Invest. 2009;119:3356–72. https://doi.org/10.1172/JCI36308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Groppa E, Brkic S, Bovo E, Reginato S, Sacchi V, di Maggio N, et al. VEGF dose regulates vascular stabilization through semaphorin3A and the neuropilin-1+ monocyte/TGF-beta1 paracrine axis. EMBO molecular medicine. 2015;7:1366–84. https://doi.org/10.15252/emmm.201405003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Takamatsu H, Okuno T, Kumanogoh A. Regulation of immune cell responses by semaphorins and their receptors. Cellular & molecular immunology. 2010;7:83–8. https://doi.org/10.1038/cmi.2009.111.

    Article  Google Scholar 

  18. Bachelder RE, Lipscomb EA, Lin X, Wendt MA, Chadborn NH, Eickholt BJ, et al. Competing autocrine pathways involving alternative neuropilin-1 ligands regulate chemotaxis of carcinoma cells. Cancer Res. 2003;63:5230–3.

    CAS  PubMed  Google Scholar 

  19. Herman JG, Meadows GG. Increased class 3 semaphorin expression modulates the invasive and adhesive properties of prostate cancer cells. Int J Oncol. 2007;30:1231–8.

    CAS  PubMed  Google Scholar 

  20. Neufeld G, Sabag AD, Rabinovicz N, Kessler O. Semaphorins in angiogenesis and tumor progression. Cold Spring Harbor perspectives in medicine. 2012;2:a006718. https://doi.org/10.1101/cshperspect.a006718.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Messersmith EK, Leonardo ED, Shatz CJ, Tessier-Lavigne M, Goodman CS, Kolodkin AL. Semaphorin III can function as a selective chemorepellent to pattern sensory projections in the spinal cord. Neuron. 1995;14:949–59.

    Article  CAS  Google Scholar 

  22. Acevedo LM, Barillas S, Weis SM, Gothert JR, Cheresh DA. Semaphorin 3A suppresses VEGF-mediated angiogenesis yet acts as a vascular permeability factor. Blood. 2008;111:2674–80. https://doi.org/10.1182/blood-2007-08-110205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Maione F, Capano S, Regano D, Zentilin L, Giacca M, Casanovas O, et al. Semaphorin 3A overcomes cancer hypoxia and metastatic dissemination induced by antiangiogenic treatment in mice. J Clin Invest. 2012;122:1832–48. https://doi.org/10.1172/JCI58976.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Chakraborty G, Kumar S, Mishra R, Patil TV, Kundu GC. Semaphorin 3A suppresses tumor growth and metastasis in mice melanoma model. PLoS One. 2012;7:e33633. https://doi.org/10.1371/journal.pone.0033633.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Casazza A, Fu X, Johansson I, Capparuccia L, Andersson F, Giustacchini A, et al. Systemic and targeted delivery of semaphorin 3A inhibits tumor angiogenesis and progression in mouse tumor models. Arterioscler Thromb Vasc Biol. 2011;31:741–9. https://doi.org/10.1161/ATVBAHA.110.211920.

    Article  CAS  PubMed  Google Scholar 

  26. Lavi N, Kessler O, Ziv K, Nir-Zvi I, Mumblat Y, Eiza N, et al. Semaphorin-3A inhibits multiple myeloma progression in a mouse model. Carcinogenesis. 2018;39(10):1283–91. https://doi.org/10.1093/carcin/bgy106.

    Article  CAS  PubMed  Google Scholar 

  27. Lee J, Shin YJ, Lee K, Cho HJ, Sa JK, Lee SY. Anti-SEMA3A antibody: a novel therapeutic agent to suppress GBM tumor growth. Cancer Res Treat. 2018;50(3):1009–22. https://doi.org/10.4143/crt.2017.315.

    Article  CAS  PubMed  Google Scholar 

  28. Catalano A, Caprari P, Moretti S, Faronato M, Tamagnone L, Procopio A. Semaphorin-3A is expressed by tumor cells and alters T-cell signal transduction and function. Blood. 2006;107(8):3321–9. https://doi.org/10.1182/blood-2005-06-2445.

    Article  CAS  PubMed  Google Scholar 

  29. Liu F, Shen W, Qiu H, Hu X, Zhang C, Chu T. Prostate cancer cells induce osteoblastic differentiation via semaphorin 3A. Prostate. 2015;75:370–80. https://doi.org/10.1002/pros.22923.

    Article  CAS  PubMed  Google Scholar 

  30. Hu ZQ, Zhou SL, Zhou ZJ, Luo CB, Chen EB, Zhan H, et al. Overexpression of semaphorin 3A promotes tumor progression and predicts poor prognosis in hepatocellular carcinoma after curative resection. Oncotarget. 2016;7:51733–46. https://doi.org/10.18632/oncotarget.10104.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Li X, Chen Q, Yin D, Shi S, Yu L, Zhou S, et al. Novel role of semaphorin 3A in the growth and progression of hepatocellular carcinoma. Oncol Rep. 2017;37:3313–20. https://doi.org/10.3892/or.2017.5616.

    Article  CAS  PubMed  Google Scholar 

  32. Tang C, Gao X, Liu H, Jiang T, Zhai X. Decreased expression of SEMA3A is associated with poor prognosis in gastric carcinoma. Int J Clin Exp Pathol. 2014;7:4782–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Vadasz Z, Rubinstein J, Bajer J, Sheffer H, Halachmi S. Overexpression of semaphorin 3A in patients with urothelial cancer. Urol Oncol. 2018;36(4):161.e1–6. https://doi.org/10.1016/j.urolonc.2017.12.007.

    Article  CAS  Google Scholar 

  34. Müller M, Giese N, Swiercz J, Ceyhan G, Esposito I, Hinz U, et al. Association of axon guidance factor Semaphorin 3A with poor outcome in pancreatic cancer. Int J Cancer. 2007;121:2421–33. https://doi.org/10.1002/ijc.22949.

    Article  CAS  PubMed  Google Scholar 

  35. Basile J, Afkhami T, Gutkind JS. Semaphorin 4D/plexin-B1 induces endothelial cell migration through the activation of PYK2, Src, and the phosphatidylinositol 3-kinase-Akt pathway. Mol Cell Biol. 2005;25:6889–98. https://doi.org/10.1128/MCB.25.16.6889-6898.2005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Toyofuku T, Yabuki M, Kamei J, Kamei M, Makino N, Kumanogoh A, et al. Semaphorin-4A, an activator for T-cell -mediated immunity, suppresses angiogenesis via Plexin-D1. EMBO J. 2007;26:1373–84. https://doi.org/10.1038/sj.emboj.7601589.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Mantovani A, Sica A, Allavena P, Garlanda C, Locati M. Tumor associated macrophages and the related myeloid-derived suppressor cells as a paradigm of the diversity of macrophage activation. Hum Immunol. 2009;70:325–30. https://doi.org/10.1016/j.humimm.2009.02.008.

    Article  CAS  PubMed  Google Scholar 

  38. Tsai HL, Lin CH, Huang CW, et al. Decreased peritherapeutic VEGF expression could be a predictor of responsiveness to first-line FOLFIRI plus bevacizumab in mCRC patients. Int J Clin Exp Pathol. 2015;8:1900–10.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Jubb AM, Hurwitz HI, Bai W, Holmgren EB, Tobin P, Guerrero AS, et al. Impact of vascular endothelial growth factor-a expression, thrombospondin-2 expression, and microvessel density on the treatment effect of bevacizumab in metastatic colorectal cancer. J Clin Oncol. 2006;24:217–27. https://doi.org/10.1200/JCO.2005.01.5388.

    Article  CAS  PubMed  Google Scholar 

  40. Hoff PM, Hochhaus A, Pestalozzi BC, Tebbutt NC, Li J, Kim TW, et al. Cediranib plus FOLFOX/CAPOX versus placebo plus FOLFOX/CAPOX in patients with previously untreated metastatic colorectal cancer: a randomized, double-blind, phase III study (HORIZON II). J Clin Oncol. 2012;30(29):3596–603. https://doi.org/10.1200/JCO.2012.42.6031.

    Article  CAS  PubMed  Google Scholar 

  41. Kara O, Duman BB, Kara B, Erdogan S, Parsak CK, Sakman G. Analysis of PTEN, VEGF, HER2 and P53 status in determining colorectal cancer benefit from bevacizumab therapy. Asian Pac J Cancer Prev. 2012;13(12):6397–401.

    Article  Google Scholar 

  42. Dowlati A, Gray R, Sandler AB, Schiller JH, Johnson DH. Cell adhesion molecules, vascular endothelial growth factor, and basic fibroblast growth factor in patients with non-small cell lung cancer treated with chemotherapy with or without bevacizumab–an Eastern Cooperative Oncology Group study. Clin Cancer Res. 2008;14(5):1407–12. https://doi.org/10.1158/1078-0432.CCR-07-1154.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Necmettin Erbakan University for supporting this trial, and I thank the all other authors for providing language help, writing assistance, and proofreading the article.

Funding

This work was supported by Necmettin Erbakan University Scientific Research Project Committee with a project number 151518014.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Murat Araz.

Ethics declarations

The ethical approval was obtained from Necmettin Erbakan University Meram Faculty of Medicine, Ethics Committee of the Non-Medical Devices Research (decision number 2015-169), before the study.

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karpuz, T., Araz, M., Korkmaz, L. et al. The Prognostic Value of Serum Semaphorin3A and VEGF Levels in Patients with Metastatic Colorectal Cancer. J Gastrointest Canc 51, 491–497 (2020). https://doi.org/10.1007/s12029-019-00263-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12029-019-00263-4

Keywords

Navigation