Skip to main content

Advertisement

Log in

MicroRNA Expression and Correlation with mRNA Levels of Colorectal Cancer-Related Genes

  • Original Research
  • Published:
Journal of Gastrointestinal Cancer Aims and scope Submit manuscript

Abstract

Introduction

MicroRNAs (miRNAs), as a family of non-coding RNAs, have opened a new window in cancer biology and transcriptome. It has been revealed that miRNAs post-transcriptionally regulate the gene expression and involve in colorectal cancer (CRC) development and progression. Our aim was to examine the differential expression of miRNAs in a CRC and to correlate their expression levels with mRNA levels of CRC-related genes (K-ras, APC, p53).

Materials and Methods

Seventy-two colorectal tumor tissues from patients with newly diagnosed CRC and 72 matched normal adjacent tissues were analyzed. Relative expression of seven CRC-related miRNAs (miR-21, miR-31, miR-20a, miR-133b, and miR-145, miR-135b and let-7g) and three CRC-related genes (K-ras, APC, p53) was detected using the SYBR Green quantitative real-time PCR technique. The correlation between gene expression levels and clinicopathological features was evaluated.

Results

Our results showed a significant difference between the two groups for the expression level of miR-21, miR-31, miR-145, and miR-20a (P < 0.001). Also, a significant difference between the two groups for the expression level of K-ras was found (P < 0.001). Further analysis revealed an inverse significant correlation between miR-145 and K-ras (R2 = 0.662, P < 0.001), while a positive correlation was observed between miR-21 and K-ras (R2 = 0.732, P < 0.001).

Conclusion

Dysregulation of miRNAs and correlation with molecular signaling pathways designated a biological role for miRNAs in various cellular mechanisms underlying CRC. On the other hand, the pattern of miRNAs expression and its correlation with transcriptional status are helpful to discovery biomarkers and design therapeutics for CRC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4.

Similar content being viewed by others

References

  1. Agah S, Akbari A, Talebi A, Masoudi M, Sarveazad A, Mirzaei A, et al. Quantification of plasma cell-free circulating DNA at different stages of colorectal cancer. Cancer Investig. 2017;35(10):625–32.

    Article  CAS  Google Scholar 

  2. Akbari A, Farahnejad Z, Akhtari J, Abastabar M, Mobini GR, Mehbod ASA. Staphylococcus aureus enterotoxin B downregulates the expression of transforming growth factor-beta (TGF-β) signaling transducers in human glioblastoma Jundishapur Journal of Microbiology 2016;5;9(5):e27297. https://doi.org/10.5812/jjm.27297.

  3. Giancotti FG. Deregulation of cell signaling in cancer. FEBS Lett. 2014;588(16):2558–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Wang X, et al. The molecular landscape of synchronous colorectal cancer reveals genetic heterogeneity. Carcinogenesis. 2018;39(5):708–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kheirelseid EA, et al. Clinical applications of gene expression in colorectal cancer. J Gastrointest Oncol. 2013;4(2):144.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Inamura K. Colorectal cancers: an update on their molecular pathology. Cancers. 2018;10(1):26.

    Article  PubMed Central  CAS  Google Scholar 

  7. Mobini GR, Ghahremani MH, Amanpour S, Dehpour AR, Akbari A, Hoseiniharouni SM, et al. Transforming growth factor beta-induced factor 2-linked X (TGIF2LX) regulates two morphogenesis genes, Nir1 and Nir2 in human colorectal. Acta Med Iran. 2016;54(5):302–7.

    PubMed  Google Scholar 

  8. Catalanotto C, Cogoni C, Zardo G. MicroRNA in control of gene expression: an overview of nuclear functions. Int J Mol Sci. 2016;17(10):1712.

    Article  PubMed Central  CAS  Google Scholar 

  9. Eslamizadeh S, Heidari M, Sh A, Faghihloo E, Ghazi H, Mirzaei A, et al. The role of microRNA signature as diagnostic biomarkers in different clinical stages of colorectal cancer. Cell J. 2018;20:220–30.

    PubMed  PubMed Central  Google Scholar 

  10. Zhou K, Liu M, Cao Y. New insight into microRNA functions in cancer: oncogene–microRNA–tumor suppressor gene network. Frontiers in molecular biosciences, vol. 4; 2017. p. 46.

    Google Scholar 

  11. Dong Y, Yu J, Ng SS. MicroRNA dysregulation as a prognostic biomarker in colorectal cancer. Cancer Manag Res. 2014;6:405.

    PubMed  PubMed Central  Google Scholar 

  12. Corsini LR, Bronte G, Terrasi M, Amodeo V, Fanale D, Fiorentino E, et al. The role of microRNAs in cancer: diagnostic and prognostic biomarkers and targets of therapies. Expert Opin Ther Targets. 2012;16(sup2):S103–9.

    Article  CAS  PubMed  Google Scholar 

  13. Oh M, Rhee S, Moon JH, Chae H, Lee S, Kang J, et al. Literature-based condition-specific miRNA-mRNA target prediction. PLoS One. 2017;12(3):e0174999.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Hashimoto Y, Akiyama Y, Yuasa Y. Multiple-to-multiple relationships between microRNAs and target genes in gastric cancer. PLoS One. 2013;8(5):e62589.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kandhavelu J, et al. Computational analysis of miRNA and their gene targets significantly involved in colorectal cancer progression. MicroRNA (Shariqah, United Arab Emirates). 2018.

  16. Tariq K, Ghias K. Colorectal cancer carcinogenesis: a review of mechanisms. Cancer Biol Med. 2016;13(1):120–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Seo J, Jin D, Choi CH, Lee H. Integration of MicroRNA, mRNA, and protein expression data for the identification of cancer-related MicroRNAs. PLoS One. 2017;12(1):e0168412.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Wu X-m, Shao XQ, Meng XX, Zhang XN, Zhu L, Liu SX, et al. Genome-wide analysis of microRNA and mRNA expression signatures in hydroxycamptothecin-resistant gastric cancer cells. Acta Pharmacol Sin. 2011;32(2):259–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Li M-h, Fu S-b, Xiao H-s. Genome-wide analysis of microRNA and mRNA expression signatures in cancer. Acta Pharmacol Sin. 2015;36(10):1200–11.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Akbari A, Ghahremani MH, Mobini GR, Abastabar M, Akhtari J, Bolhassani M, et al. Down-regulation of miR-135b in colon adenocarcinoma induced by a TGF-β receptor I kinase inhibitor (SD-208). Iran J Basic Med Sci. 2015;18(9):856–61.

    PubMed  PubMed Central  Google Scholar 

  21. Vlachos IS, Zagganas K, Paraskevopoulou MD, Georgakilas G, Karagkouni D, Vergoulis T, et al. DIANA-miRPath v3. 0: deciphering microRNA function with experimental support. Nucleic Acids Res. 2015;43(W1):W460–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Cekaite L, et al. MicroRNAs as growth regulators, their function and biomarker status in colorectal cancer. Oncotarget. 2016;7(6):6476.

    Article  PubMed  Google Scholar 

  23. Chen J, Wang W, Zhang Y, Hu T, Chen Y. The roles of miR-200c in colon cancer and associated molecular mechanisms. Tumor Biol. 2014;35(7):6475–83.

    Article  CAS  Google Scholar 

  24. Yu Y, Nangia-Makker P, Farhana L, G. Rajendra S, Levi E, Majumdar APN. miR-21 and miR-145 cooperation in regulation of colon cancer stem cells. Mol Cancer. 2015;14(1):98.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Gao XH, et al. Differences of protein expression profiles, KRAS and BRAF mutation, and prognosis in right-sided colon, left-sided colon and rectal cancer. Sci Rep. 2017;7(1):7882.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Boutin AT, Liao WT, Wang M, Hwang SS, Karpinets TV, Cheung H, et al. Oncogenic Kras drives invasion and maintains metastases in colorectal cancer. Genes Dev. 2017;31:370–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Nussinov R, Tsai C-J, Jang H. Independent and core pathways in oncogenic KRAS signaling. In: Independent and core pathways in oncogenic KRAS signaling: Taylor & Francis; 2016.

  28. Chen Y, Gruidl M, Remily-Wood E, Liu RZ, Eschrich S, Lloyd M, et al. Quantification of β-catenin signaling components in colon cancer cell lines, tissue sections, and microdissected tumor cells using reaction monitoring mass spectrometry. J Proteome Res. 2010;9(8):4215–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Najdi R, Holcombe RF, Waterman ML. Wnt signaling and colon carcinogenesis: beyond APC. J Carcinog. 2011;10:5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Novellasdemunt L, Antas P, Li VS. Targeting Wnt signaling in colorectal cancer. A review in the theme: cell signaling: proteins, pathways and mechanisms. Am J Phys Cell Phys. 2015;309(8):C511–21.

    Article  CAS  Google Scholar 

  31. Ye J-J, Cao J. MicroRNAs in colorectal cancer as markers and targets: recent advances. World J Gastroenterol: WJG. 2014;20(15):4288.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  32. Ferraro A, Kontos CK, Boni T, Bantounas I, Siakouli D, Kosmidou V, et al. Epigenetic regulation of miR-21 in colorectal cancer: ITGB4 as a novel miR-21 target and a three-gene network (miR-21-ITGΒ4-PDCD4) as predictor of metastatic tumor potential. Epigenetics. 2014;9(1):129–41.

    Article  CAS  PubMed  Google Scholar 

  33. Wu Y, Song Y, Xiong Y, Wang X, Xu K, Han B, et al. MicroRNA-21 (Mir-21) promotes cell growth and invasion by repressing tumor suppressor PTEN in colorectal cancer. Cell Physiol Biochem. 2017;43(3):945–58.

    Article  CAS  PubMed  Google Scholar 

  34. Li T, et al. MicroRNA-21 as a potential colon and rectal cancer biomarker. World J Gastroenterol: WJG. 2013;19(34):5615.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Oliveto S, Mancino M, Manfrini N, Biffo S. Role of microRNAs in translation regulation and cancer. World J Biol Chem. 2017;8(1):45–56.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Aizer A, Shav-Tal Y. Intracellular trafficking and dynamics of P bodies. Prion. 2008;2(4):131–4.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Stalder L, Mühlemann O. Processing bodies are not required for mammalian nonsense-mediated mRNA decay. Rna. 2009;15:1265–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Cantini L, et al. A review of computational approaches detecting microRNAs involved in cancer. Frontiers in Bioscience (Landmark edition). 2017;22:1774–91.

    Article  CAS  Google Scholar 

  39. Serra RW, Fang M, Park SM, Hutchinson L, Green MR. A KRAS-directed transcriptional silencing pathway that mediates the CpG island methylator phenotype. Elife. 2014;3:e02313.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Valeri N, et al. MicroRNA-135b promotes cancer progression by acting as a downstream effector of oncogenic pathways in colon cancer. Cancer Cell. 2014;25(4):469–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Aslam MI, Hussein S, West K, Singh B, Jameson JS, Pringle JH. MicroRNAs associated with initiation and progression of colonic polyp: a feasibility study. Int J Surg. 2015;13:272–9.

    Article  PubMed  Google Scholar 

  42. Nagel R, le Sage C, Diosdado B, van der Waal M, Oude Vrielink JAF, Bolijn A, et al. Regulation of the adenomatous polyposis coli gene by the miR-135 family in colorectal cancer. Cancer Res. 2008;68(14):5795–802.

    Article  CAS  PubMed  Google Scholar 

  43. Chivukula RR, Shi G, Acharya A, Mills EW, Zeitels LR, Anandam JL, et al. An essential mesenchymal function for miR-143/145 in intestinal epithelial regeneration. Cell. 2014;157(5):1104–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Li S, Wu X, Xu Y, Wu S, Li Z, Chen R, et al. miR-145 suppresses colorectal cancer cell migration and invasion by targeting an ETS-related gene. Oncol Rep. 2016;36(4):1917–26.

    Article  CAS  PubMed  Google Scholar 

  45. Rokavec M, et al. The p53/microRNA connection in gastrointestinal cancer. Clin Exp Gastroenterol. 2014;7:395.

    PubMed  PubMed Central  Google Scholar 

  46. Vergoulis T, et al. TarBase 6.0: capturing the exponential growth of miRNA targets with experimental support. Nucleic Acids Res. 2011;40(D1):D222–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Zhang G, Yin S, Mao J, Liang F, Zhao C, Li P, et al. Integrated analysis of mRNA-seq and miRNA-seq in the liver of Pelteobagrus vachelli in response to hypoxia. Sci Rep. 2016;6:22907.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Guo L, et al. Integrative analysis of miRNA-mRNA and miRNA-miRNA interactions. Biomed Res Int. 2014;2014.

    Google Scholar 

  49. Martinez-Pastor M, Lancaster WA, Tonner PD, Adams MWW, Schmid AK. A transcription network of interlocking positive feedback loops maintains intracellular iron balance in archaea. Nucleic Acids Res. 2017;45(17):9990–10001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Herranz H, Cohen SM. MicroRNAs and gene regulatory networks: managing the impact of noise in biological systems. Genes Dev. 2010;24(13):1339–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Lai X, Wolkenhauer O, Vera J. Understanding microRNA-mediated gene regulatory networks through mathematical modelling. Nucleic Acids Res. 2016;44(13):6019–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We would like to thank the patients who participated in the study.

Funding

This work was financially supported by Deputy of Research, Iran University of Medical Sciences (Grant No. 26699).

Author information

Authors and Affiliations

Authors

Contributions

PG and AA contributed to the study design and conception. FM and SM performed experiments. AA and AT assisted with the analysis of the data. AA prepared the manuscript which PG and AT significantly revised. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Abolfazl Akbari.

Ethics declarations

The project was approved by the Research Ethics Committee (Ethical code number: IR.IUMS.REC 94–26699.) All patients signed a free and informed consent form for enrollment in the study.

Conflict of Interest

All authors declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moghadamnia, F., Ghoraeian, P., Minaeian, S. et al. MicroRNA Expression and Correlation with mRNA Levels of Colorectal Cancer-Related Genes. J Gastrointest Canc 51, 271–279 (2020). https://doi.org/10.1007/s12029-019-00249-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12029-019-00249-2

Keywords

Navigation