Skip to main content

Advertisement

Log in

Dosimetric Analysis of Unflattened (FFFB) and Flattened (FB) Photon Beam Energy for Gastric Cancers Using IMRT and VMAT—a Comparative Study

  • Original Research
  • Published:
Journal of Gastrointestinal Cancer Aims and scope Submit manuscript

Abstract

Purpose

To evaluate the feasibility of flattening filter free beam (FFFB) for the treatment of gastric tumors and to review their benefits over 6MV flatten beam (6MV_FFB).

Methods

Fifteen patients with histologically proven gastric carcinoma were selected. CT scans with slice thickness of 0.3 cm were acquired and planning target volume (PTV) and organ at risk (OAR) were delineated. Plans were made retrospectively for each patient for the prescription dose of 45 Gy/25 fractions to the PTV. Four isocentric plans were compared in the present study on Varian TrueBeam linear accelerator (Varian Medical Systems, Palo Alto, CA, USA).

Results

PTV D98% was 44.41 ± 0.12, 44.38 ± 0.13, 44.59 ± 0.14, and 44.49 ± 0.19 Gy for IMRT 6MV_FFB, IMRT 6MV_FFFB, VMAT 6MV_FFB, and VMAT 6MV_FFFB respectively. 6MV_FFFB beam minimizes the mean heart dose Dmean (P = 0.001). VMAT dominates over IMRT when it came to kidney doses V12Gy (P = 0.02), V23Gy (P = 0.015), V28Gy (P = 0.011), and Dmax (P < 0.01). VMAT has significantly reduced the doses to kidneys. It was analyzed that 6MV_FFFB significantly reduces the dose to normal tissues (P = 0.006 and P = 0.018). VMAT significantly reduces the TMU, which is required to deliver the similar dose by IMRT (P < 0.01).

Conclusions

Unflattened beam spares the organs at risk significantly to avoid the chances of secondary malignancies and reduces the intra-fraction motion during treatment due to provision of higher dose rate. Hence, we conclude that 6MV unflattened beam can be used to treat gastric carcinoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Massimo Rugge, Matteo Fassan, David Y.Graham; Epidemiology of gastric cancer. Gastric Cancer pp 23–34.

  2. Guggenheim DE, Shah MA. Gastric cancer epidemiology and risk factors. J Surg Oncol. 2013;107(3):230–6.

    Article  PubMed  Google Scholar 

  3. Leong T, Willis D, Joon DL, Condron S, Hui A, Ngan SY. 3D conformal radiotherapy for gastric cancer—results of a comparative planning study. Radiother Oncol. 2005 Mar;74(3):301–6.

    Article  PubMed  Google Scholar 

  4. Blot WJ, Devesa SS, Kneller RW, Fraumeni JF Jr. Rising incidence of adenocarcinoma of the esophagus and gastric cardia. JAMA. 1991;265:1287–9.

    Article  CAS  PubMed  Google Scholar 

  5. Powell J, McConkey CC. The rising trend in oesophageal adenocarcinoma and gastric cardia. Eur J Cancer Prev. 1992;1:265–9.

    Article  CAS  PubMed  Google Scholar 

  6. Botterweck AA, Schouten LJ, Volovics A, et al. Trends in incidence of adenocarcinoma of the oesophagus and gastric cardia in ten European countries. Int J Epidemiol. 2000;29:645–54.

    Article  CAS  PubMed  Google Scholar 

  7. Okabayashi T, Gotoda T, Kondo H, Inui T, Ono H, Saito D, et al. Early carcinoma of the gastric cardia in Japan: is it different from that in the West? Cancer. 2000;89:2555–9.

    Article  CAS  PubMed  Google Scholar 

  8. Chung JW, Lee GH, Choi KS, et al. Unchanging trend of esophagogastric junction adenocarcinoma in Korea: experience at a single institution based on Siewert’s classification. Dis Esophagus. 2009;22:676–81.

    Article  PubMed  Google Scholar 

  9. Naseri A, Mesbahi A. A review on photoneutrons characteristics in radiation therapy with high energy photon beams. Rep Pract Oncol Radiother. 2010 Sep;15(5):138–44.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Otto K. Volumetric modulated arc therapy: IMRT in a single gantry arc. Med Phys. Jan 2008;35(1):310–7.

    Article  PubMed  Google Scholar 

  11. Teh BS, Woo SY, Brian Butler E. Intensity modulated radiation therapy (IMRT): a new promising technology in radiation oncology. Oncologist. 1999;4:433–42.

    CAS  PubMed  Google Scholar 

  12. Lorraine Portelance KS, Chao C, Grigsby PW, Bennet H, Low D. Intensity-modulated radiation therapy (IMRT) reduces small bowel, rectum and bladder doses in patients with cervical cancer receiving pelvic and para-aortic irradiation. Int J Radiat Oncol Biol Phys. 2001;51(1):261–6.

    Article  Google Scholar 

  13. Ringash J, Perkins G, Brierley J, et al. IMRT for adjuvant radiation in gastric cancer: a preferred plan? Int J Radiat Oncol Biol Phys. 2005;63(3):732–8.

    Article  PubMed  Google Scholar 

  14. Nicolini G, Sarbani GL, Shrivastava SK, et al. Filter-free beams compared with static gantry IMRT and 3D conformal radiotherapy for advanced esophageal cancer: a feasibility study. Int J Radiat Oncol Biol Phys. 2012;84(2):553–60.

    Article  PubMed  Google Scholar 

  15. Kumar L, Yadav G, KR Samuvel MB, Kumar P, Suhail M, Pal M. Dosimetric influence of filtered and flattening filter free photon beam on rapid arc (RA) radiotherapy planning in case of cervix carcinoma. Rep Pract Oncol Radiother. 2017;22:10–8.

    Article  PubMed  Google Scholar 

  16. Dang TM, Peters MJ, Hickey B, Semciw A. Efficacy of flattening filter free beam in stereotactic body radiation therapy planning and treatment: a systematic review with meta-analysis. J Med Imaging Radiat Oncol. 2017;61:379–87.

    Article  PubMed  Google Scholar 

  17. Stephen RS, Jacqueline KB, Daniel GH, et al. Updated analysis of SWOG-directed intergroup study 0116: a phase III trial of adjuvant radiochemotherapy versus observation after curative gastric cancer resection. J Clin Oncol. 2012;30(19):2327–33.

    Article  CAS  Google Scholar 

  18. Contouring Atlases- RTOG available on https://www.rtog.org/CoreLab/ContouringAtlases.aspx

  19. John SM, Stephen RS, Jacqueline B, et al. Chemoradiotherapy after surgery compared with surgery alone for adenocarcinoma of the stomach or gastroesophageal junction. N Engl J Med. 2001;345:725–30.

    Article  Google Scholar 

  20. Marks LB, Yorke ED, Jackson A, et al. The use of normal tissue complication probability (NTCP) models in the clinic. Int J Radiat Oncol Biol Phys. 2010;76(3):S10–9.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Zhai DY, Yin Y, Gong GZ, Liu TH, Chen JH, Ma CS, et al. RapidArc radiotherapy for whole pelvis lymph node in cervical cancer with 6 and 15 MV: a treatment planning comparison with fixed field IMRT. J Radiat Res. 2012;00:1–8.

    Google Scholar 

  22. ICRU Report 83. Prescribing, recording and reporting intensity modulated radiation therapy. Bethesda: International Commission on Radiation Units and Measurements; 2010.

  23. D’Arienzo M, Stefano GM, deSanctis V, Mattia FO, Chiacchiararelli L, Riccardo ME. Integral dose and radiation-induced secondary malignancies: comparison between stereotactic body radiation therapy and three- dimensional radiotherapy. Int J Environ Res Public Health. 2012;9(11):4223–40.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Lin MH, Veltchev I, Koren S, Ma C, Li J. Robotic radio-surgery system patient specific QA for extra-cranial treatments using the planer ion chamber array and the cylindrical diode array. JACMP. 2015;16(4):290–305.

    Article  PubMed  Google Scholar 

  25. Hussein M, Rowshanfarzad P, Ebert MA, Nisbet A, Clark CH. A comparison of the gamma index analysis in various commercial IMRT/VMAT QA systems. Radiother Oncol. 2013 Dec;109(3):370–6.

    Article  PubMed  Google Scholar 

  26. Zwahlen DR, Lang S, Hrbacek J, Glanzmann C, Kloeck S, Najafi Y, et al. The use of photon beams of a flattening filter-free linear accelerator for hypofractionated volumetric modulated arc therapy in localized prostate cancer. Int J Radiat Oncol Biol Phys. 2012;83:1655–60.

    Article  PubMed  Google Scholar 

  27. Hrbacek J, Lang S, Graydon SN, Klöck S, Riesterer O. Dosimetric comparison of flattened and unflattened beams for stereotactic ablative radiotherapy of stage I non-small cell lung cancer. Med Phys. 2014;41:031709.

    Article  CAS  PubMed  Google Scholar 

  28. Garis D, Ohlhues L, Brodin NP, et al. A treatment planning and delivery comparison of volumetric modulated arc therapy with or without flattening filter for gliomas, brain metastases, prostate, head/neck and early stage lung cancer. Acta Oncol. 2014;53:1005–11.

    Article  Google Scholar 

  29. Deng X, Han C, Chen S, et al. Dosimetric benefits of intensity-modulated radiotherapy and volumetric modulated arc therapy in the treatment of post-operative cervical cancer patients. J Appl Clin Med Phys. 2017;18(1):25–31.

    PubMed  Google Scholar 

  30. Cozzi L, Dinshaw KA, Shrivastava SK, Mahantshetty U, Engineer R, Deshpande DD, et al. A treatment planning study comparing volumetric arc modulation with RapidArc and fixed field IMRT for cervix uteri radiotherapy. Radiother Oncol. 2008;89:180–91.

    Article  PubMed  Google Scholar 

  31. Sharma MK, Mitra S, Saxena U, Bhushan M, Shrivastava H, Simson DK, et al. Is volumetric modulated arc therapy (RapidArc) better than intensity modulated radiotherapy for gynecological malignancies? A dosimetric comparison. J Cancer Res Ther. 2014;10:883–8.

    Article  PubMed  Google Scholar 

  32. Yadav G, Bhushan M, Dewan A, Saxena U, Kumar L, Chauhan D, et al. Dosimetric influence of photon beam energy and number of arcs on volumetric modulated arc therapy in carcinoma cervix: a planning study. Rep Pract Oncol Radiother. 2017;22:1–9.

    Article  PubMed  Google Scholar 

  33. Vassiliev ON, Kry SF, Kuban DA, et al. Treatment planning study of prostate cancer intensity-modulated radiotherapy with a Varian Clinac operated without a flattening filter. Int J Radiat Oncol Biol Phys. 2007;68(5):1567–71.

    Article  PubMed  Google Scholar 

  34. Daniel RZ, Stephanie L, Jan H, Christoph G, Stephan K, Yousef N, et al. The use of photon beams of a flattening filter-free linear accelerator for hypofractionated volumetric modulated arc therapy in localized prostate cancer. Int J Radiat Oncol Biol Phys. 2012;83(5):1655–60.

    Article  Google Scholar 

  35. Fu W, Dai J, Hu Y, Han D, Song Y. Delivery time comparison for intensity-modulated radiation therapy with/without flattening filter: a planning study. Phys Med Biol. 2004;49:1535–47.

    Article  PubMed  Google Scholar 

  36. Hall EJ, Wuu CS. Radiation-induced second cancers: the impact of 3DCRT and IMRT. Int J Radiat Oncol Biol Phys. 2003;56:83–8.

    Article  PubMed  Google Scholar 

  37. Gulliford SL, Foo K, Morgan RC, et al. Dose-volume constraints to reduce rectal side effects from prostate radiotherapy: evidence from MRC RT01 Trail ISRCTN 47772397. Int J Radiat Oncol Biol Phys. 2010;76(3):747–54.

    Article  PubMed  Google Scholar 

  38. Vassiliev ON, Kry SF, Chang JY, et al. Stereotactic radiotherapy for lung cancer using a flattening filter free clinic. J Appl Clin Med Phys. 2009;10:2880.

    Article  PubMed  Google Scholar 

  39. Kry SF, Vassiliev ON, Mohan R. Out-of-field photon dose following removal of the flattening filter from a medical accelerator. Phys Med Biol. 2010;55:2155–66.

    Article  PubMed  Google Scholar 

  40. Murray LJ, Thompson CM, Lilley J, Cosgrove V, Franks K, Sebag-Montefiore D, et al. Radiation-induced second primary cancer risks from modern external beam radiotherapy for early prostate cancer: impact of stereotactic ablative radiotherapy (SABR), volumetric modulated arc therapy (VMAT) and flattening filter free (FFF) radiotherapy. Phys Med Biol. 2015;60:1237–57.

    Article  PubMed  Google Scholar 

  41. Kragl G, Baier F, Lutz S, Albrich D, Dalaryd M, Kroupa B, et al. Flattening filter free beams in SBRT and IMRT: dosimetric assessment of peripheral doses. Z Med Phys. 2011;21:91–101.

    Article  PubMed  Google Scholar 

  42. Cashmore J, Ramtohul M, Ford D. Lowering whole-body radiation doses in pediatric intensity-modulated radiotherapy through the use of unflattened photon beams. Int J Radiat Oncol Biol Phys. 2011;80:1220–7.

    Article  PubMed  Google Scholar 

  43. Vassiliev ON, Titt U, Ponisch F, et al. Dosimetric properties of photon beams from a flattening filter free clinical accelerator. Phys Med Biol. 2006;51:1907–17.

    Article  PubMed  Google Scholar 

  44. Kamangar F, Dores GM, Anderson WF. Patterns of cancer incidence, mortality and prevalence across five continents: defining priorities to reduce cancer disparities in different geographic regions of the world. J Clin Oncol. 2006;24:2137–50.

    Article  PubMed  Google Scholar 

  45. McClosky SA, Yang GY. Benefits and challenges of radiation therapy in gastric cancer: techniques for improving outcomes. Gastrointest Cancer Res. 2009;3(1):15–9.

    Google Scholar 

  46. Jemal A, Bray F, Center MM, et al. Global cancer statistics. CA Cancer J Clin. 2011;61:69–90.

    Article  Google Scholar 

  47. Spruijt KH, Dahele M, Cuijpers JP, Jeulink M, Rietveld D, Slotman BJ, et al. Flattening filter free vs flattened beams for breast irradiation. Int J Radiat Oncol Biol Phys. 2013;85:506–13.

    Article  PubMed  Google Scholar 

  48. Hoffmann L, et al. Implementation and experimental validation of the high dose rate stereotactic treatment mode at Varian accelerators. Acta Oncol. 2009;48:201–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manindra Bhushan.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhushan, M., Yadav, G., Tripathi, D. et al. Dosimetric Analysis of Unflattened (FFFB) and Flattened (FB) Photon Beam Energy for Gastric Cancers Using IMRT and VMAT—a Comparative Study. J Gastrointest Canc 50, 408–419 (2019). https://doi.org/10.1007/s12029-018-0080-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12029-018-0080-9

Keywords

Navigation