Advertisement

Journal of Gastrointestinal Cancer

, Volume 48, Issue 3, pp 256–259 | Cite as

Angiogenesis, Invasion, and Metastasis Characteristics of Hepatocellular Carcinoma

  • Şirin Yüksel
  • Cemaliye Boylu Akyerli
  • M. Cengiz YakıcıerEmail author
Review Article

Introduction

Starting with the chronic inflammation and cirrhosis, dysplastic nodules of the liver usually progresses to hepatocellular carcinoma through a series of complex multistep processes known as hepatocarcinogenesis. Even though the details of hepatocarcinogenesis still remain to be elucidated, previous studies suggest that two distinct mechanisms might be responsible in the formation of hepatocellular carcinoma. Hepatocarcinogenesis can be triggered by either exposing the liver to various chronic injuries (HBV, HCV, alcohol, aflatoxin, metabolic disease such as obesity, type II diabetes, and insulin resistance) or the presence of somatic mutations and/or genomic alterations in one or more oncogenes or tumor suppressors [1, 2]. Both of these mechanisms seem to disrupt various specific signaling pathways playing roles in various cancer hallmarks such as angiogenesis, invasion, metastasis, regulation of cell cycle, proliferation, differentiation, cell invasion, and inflammation [

References

  1. 1.
    Whittaker S, Marais R, Zhu AX. The role of signaling pathways in the development and treatment of hepatocellular carcinoma. Oncogene. 2010;29(36):4989–5005.CrossRefPubMedGoogle Scholar
  2. 2.
    Han ZG. Functional genomic studies: insights into the pathogenesis of liver cancer. Annu rev Genomics hum Genet. 2012;13:171–205.CrossRefPubMedGoogle Scholar
  3. 3.
    Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74.CrossRefPubMedGoogle Scholar
  4. 4.
    Karamysheva AF. Mechanisms of angiogenesis. Biochemistry (Mosc). 2008;73(7):751–62.CrossRefGoogle Scholar
  5. 5.
    Sanz-Cameno P, Trapero-Marugán M, Chaparro M, Jones EA, Moreno-Otero R. Angiogenesis: from chronic liver inflammation to hepatocellular carcinoma. J Oncol. 2010;2010:272170.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    McEvoy SH, McCarthy CJ, Lavelle LP, Moran DE, Cantwell CP, Skehan SJ, et al. Hepatocellular carcinoma: illustrated guide to systematic radiologic diagnosis and staging according to guidelines of the American Association for the Study of Liver Diseases. Radiographics. 2013;33(6):1653–68.CrossRefPubMedGoogle Scholar
  7. 7.
    Iwakiri Y, Shah V, Rockey DC. Vascular pathobiology in chronic liver disease and cirrhosis—current status and future directions. J Hepatol. 2014;61(4):912–24.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Yang Y, Sun M, Wang L, Jiao B. HIFs, angiogenesis, and cancer. J Cell Biochem. 2013;114:967–74.CrossRefPubMedGoogle Scholar
  9. 9.
    Semenza GL. Hypoxia-inducible factors in physiology and medicine. Cell. 2012;148:399–408.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Roberts LR, Gores GJ. Hepatocellular carcinoma: molecular pathways and new therapeutic targets. Semin Liver dis. 2005;25:212–25.CrossRefPubMedGoogle Scholar
  11. 11.
    Cech TR, Steitz JA. The noncoding RNA revolution-trashing old rules to forge new ones. Cell. 2014;157(1):77–94.CrossRefPubMedGoogle Scholar
  12. 12.
    Weiqi T, Yang L, Seng-Gee L, Theresa MCT. miR-106b-25/miR-17-92 clusters: polycistrons with oncogenic roles in hepatocellular carcinoma. World J Gastroenterol. 2014;20(20):5962–72.CrossRefGoogle Scholar
  13. 13.
    Van Zijl F, Krupitza G, Mikulits W. Initial steps of metastasis: cell invasion and endothelial transmigration. Mutat res. 2011;728(1–2):23–34.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Krakhmal NV, Zavyalova MV, Denisov EV, Vtorushin SV, Perelmuter VM. Cancer invasion: patterns and mechanisms. Acta Nat. 2015;7(2):17–28.Google Scholar
  15. 15.
    Friedl P, Wolf K. Tumour-cell invasion and migration: diversity and escape mechanisms. Nat rev Cancer. 2003;3:362–74.CrossRefPubMedGoogle Scholar
  16. 16.
    Friedl P, Alexander S. Cancer invasion and the microenvironment: plasticity and reciprocity. Cell. 2011;147(5):992–1009.CrossRefPubMedGoogle Scholar
  17. 17.
    Thiery JP, Acloque H, Huang RY, Nieto MA. Epithelial-mesenchymal transitions in development and disease. Cell. 2009;139(5):871–90.CrossRefPubMedGoogle Scholar
  18. 18.
    Hegerfeldt Y, Tusch M, Bröcker EB, Friedl P. Collective cell movement in primary melanoma explants: plasticity of cell-cell interaction, beta1-integrin function, and migration strategies. Cancer res. 2002;62(7):2125–30.PubMedGoogle Scholar
  19. 19.
    Wolf K, Mazo I, Leung H, Engelke K, von Andrian UH, Deryugina EI, et al. Compensation mechanism in tumor cell migration: mesenchymal-amoeboid transition after blocking of pericellular proteolysis. J Cell Biol. 2003;160(2):267–77.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Giannelli G, Koudelkova P, Dituri F, Mikulits W. Role of epithelial to mesenchymal transition in hepatocellular carcinoma. J Hepatol. 2016;65(4):798–808.CrossRefPubMedGoogle Scholar
  21. 21.
    Lamouille S, Xu J, Derynck R. Molecular mechanisms of epithelial-mesenchymal transition. Nat Rev Mol Cell Biol. 2014;15:178–96.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Tam WL, Weinberg RA. The epigenetics of epithelial-mesenchymal plasticity in cancer. Nat Med. 2013;11:1438–49.CrossRefGoogle Scholar
  23. 23.
    Zavadil J, Böttinger EP. TGF-beta and epithelial-to-mesenchymal transitions. Oncogene. 2005;24(37):5764–74.CrossRefPubMedGoogle Scholar
  24. 24.
    Caja L, Bertran E, Campbell J, Fausto N, Fabregat I. The transforming growth factor beta (TGF-beta) mediates acquisition of a mesenchymal stem cell-like phenotype in human liver cells. J Cell Physiol. 2011;226:1214–23.CrossRefPubMedGoogle Scholar
  25. 25.
    Ogunwobi OO, Liu C. Hepatocyte growth factor upregulation promotes carcinogenesis and epithelial-mesenchymal transition in hepatocellular carcinoma via Akt and COX-2 pathways. Clin Exp Metastasis. 2011;28:721–31.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Xu J, Zhu X, Wu L, Yang R, Yang Z, Wang Q, et al. MicroRNA-122 suppresses cell proliferation and induces cell apoptosis in hepatocellular carcinoma by directly targeting Wnt/β-catenin pathway. Liver Int. 2012;32(5):752–60.CrossRefPubMedGoogle Scholar
  27. 27.
    Sun J, Lu H, Wang X, Jin H. MicroRNAs in hepatocellular carcinoma: regulation, function, and clinical implications. ScientificWorldJournal. 2013;2013:924206.PubMedPubMedCentralGoogle Scholar
  28. 28.
    Li G, Zhang H, Wan X, Yang X, Zhu C, Wang A, et al. Long noncoding RNA plays a key role in metastasis and prognosis of hepatocellular carcinoma. Biomed Res Int. 2014;2014:780521.PubMedPubMedCentralGoogle Scholar
  29. 29.
    Dhanasekaran R, Bandoh S, Roberts LR (2016) Molecular pathogenesis of hepatocellular carcinoma and impact of therapeutic advances. F1000Research 2016, 5(F1000 Faculty Rev):879.Google Scholar
  30. 30.
    Nault JC, De Reyniès A, Villanueva A, Calderaro J, Rebouissou S, et al. A hepatocellular carcinoma 5-gene score associated with survival of patients after liver resection. Gastroenterology. 2013;145:176–87.CrossRefPubMedGoogle Scholar
  31. 31.
    Ji J, Shi J, Budhu A, Yu Z, Forgues M, Roessler S, et al. MicroRNA expression, survival, and response to interferon in liver cancer. N Engl J med. 2009;361:1437–47.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Hoshida Y, Villanueva A, Kobayashi M, Peix J, Chiang DY, et al. Gene expression in fixed tissues and outcome in hepatocellular carcinoma. N Engl J med. 2008;359:1995–2004.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Berretta M, Rinaldi L, Di Benedetto F, Lleshi A, De Re V, Facchini G, et al. Angiogenesis inhibitors for the treatment of hepatocellular carcinoma. Front Pharmacol. 2016;9(7):428.Google Scholar
  34. 34.
    Chen C, Wang G. Mechanisms of hepatocellular carcinoma and challenges and opportunities for molecular targeted therapy. World J Hepatol. 2015;7(15):1964–70.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Şirin Yüksel
    • 1
  • Cemaliye Boylu Akyerli
    • 2
  • M. Cengiz Yakıcıer
    • 1
    Email author
  1. 1.Department of Molecular Biology and Genetics, Faculty of Arts and SciencesAcıbadem Mehmet Ali Aydınlar UniversityIstanbulTurkey
  2. 2.Department of Medical Biology, School of MedicineAcıbadem Mehmet Ali Aydınlar UniversityIstanbulTurkey

Personalised recommendations