Journal of Gastrointestinal Cancer

, Volume 45, Issue 4, pp 466–471 | Cite as

HES1 as an Independent Prognostic Marker in Esophageal Squamous Cell Carcinoma

  • Shaghayegh Taleb
  • Mohammad Reza Abbaszadegan
  • Meysam Moghbeli
  • Nasim Hayati Roudbari
  • Mohammad Mahdi Forghanifard
Original Research

Abstract

Background

Notch signaling is one of the main involved pathways in cell differentiation and organogenesis, and its deregulation may lead to tumorigenesis. In this pathway, targeted to the CSL (CBF1, Suppressor of Hairless or Lag-1) complex, notch intracellular domain (NICD) releases corepressors and recruits MAML1 as coactivator triggering the activation of notch signaling transcription complex. Hairy enhance of split-1 (HES1) is one of the notch signaling target genes which is a basic helix-loop-helix (bHLH) transcription factor acting as a proliferation stimulator through the suppression of cell cycle inhibitors such as p27 and p21.

Aims

In this study, we aimed to analyze the role of HES1 in the progression of esophageal squamous cell carcinoma (ESCC).

Methods

Messenger RNA (mRNA) expression of HES1 in fresh tumoral tissues and their margin normal samples were assessed in 50 ESCC patients by real-time polymerase chain reaction (RT-PCR).

Results

Thirteen out of 50 cases (26 %) had HES1 underexpression, while HES1 overexpression was observed only in 4 (8 %) samples. HES1 underexpression was significantly correlated with tumor depth of invasion (P = 0.035).

Conclusion

Although we have not observed any significant correlation between the HES1 expression and notch activation in ESCC, this study is the first report that elucidated the HES1 underexpression in ESCC and revealed its correlation with the invasiveness of ESCC.

Keywords

ESCC Notch signaling pathway HES1 Real-time PCR Iran Tumor 

References

  1. 1.
    Forghanifard MM, Gholamin M, Farshchian M, Moaven O, Memar B, Forghani MN, et al. Cancer-testis gene expression profiling in esophageal squamous cell carcinoma: identification of specific tumor marker and potential targets for immunotherapy. Cancer Biol Ther. 2011;12(3):191–7.PubMedCrossRefGoogle Scholar
  2. 2.
    Mousavi SM, Gouya MM, Ramazani R, Davanlou M, Hajsadeghi N, Seddighi Z. Cancer incidence and mortality in Iran. Ann Oncol. 2009;20(3):556–63.PubMedCrossRefGoogle Scholar
  3. 3.
    Ingham PW, McMahon AP. Hedgehog signaling in animal development: paradigms and principles. Genes Dev. 2001;15(23):3059–87.PubMedCrossRefGoogle Scholar
  4. 4.
    Nelson WJ, Nusse R. Convergence of Wnt, beta-catenin, and cadherin pathways. Science. 2004;303(5663):1483–7.PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Nickoloff BJ, Osborne BA, Miele L. Notch signaling as a therapeutic target in cancer: a new approach to the development of cell fate modifying agents. Oncogene. 2003;22(42):6598–608.PubMedCrossRefGoogle Scholar
  6. 6.
    Miele L. Notch signaling. Clin Cancer Res. 2006;12(4):1074–9.PubMedCrossRefGoogle Scholar
  7. 7.
    Miele L, Miao H, Nickoloff BJ. NOTCH signaling as a novel cancer therapeutic target. Curr Cancer Drug Targets. 2006;6(4):313–23.PubMedCrossRefGoogle Scholar
  8. 8.
    Rizzo P, Osipo C, Foreman K, Golde T, Osborne B, Miele L. Rational targeting of Notch signaling in cancer. Oncogene. 2008;27(38):5124–31.PubMedCrossRefGoogle Scholar
  9. 9.
    Barolo S, Stone T, Bang AG, Posakony JW. Default repression and Notch signaling: Hairless acts as an adaptor to recruit the corepressors Groucho and dCtBP to Suppressor of Hairless. Genes Dev. 2002;16(15):1964–76.PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Oswald F, Kostezka U, Astrahantseff K, Bourteele S, Dillinger K, Zechner U, et al. SHARP is a novel component of the Notch/RBP-Jkappa signalling pathway. EMBO J. 2002;21(20):5417–26.PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Nakamura T, Tsuchiya K, Watanabe M. Crosstalk between Wnt and Notch signaling in intestinal epithelial cell fate decision. J Gastroenterol. 2007;42(9):705–10.PubMedCrossRefGoogle Scholar
  12. 12.
    Osipo C, Golde TE, Osborne BA, Miele LA. Off the beaten pathway: the complex cross talk between Notch and NF-kappaB. Lab Invest. 2008;88(1):11–7.PubMedCrossRefGoogle Scholar
  13. 13.
    Moghbeli M, Moghbeli F, Forghanifard MM, Garayali A, Abbaszadegan MR. Cancer stem cell markers in esophageal cancer. Am J Cancer Sci. 2013;2(1):37–50.Google Scholar
  14. 14.
    Wang Z, Li Y, Kong D, Ahmad A, Banerjee S, Sarkar FH. Cross-talk between miRNA and Notch signaling pathways in tumor development and progression. Cancer Lett. 2010;292(2):141–8.PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Wang Z, Li Y, Banerjee S, Sarkar FH. Emerging role of Notch in stem cells and cancer. Cancer Lett. 2009;279(1):8–12.PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    South AP, Cho RJ, Aster JC. The double-edged sword of Notch signaling in cancer. Semin Cell Dev Biol. 2012;23(4):458–64.PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Ma J, Xia J, Miele L, Sarkar FH, Wang Z. Notch signaling pathway in pancreatic cancer progression. Pancreat Disord Ther. 2013;3(114).Google Scholar
  18. 18.
    Roma J, Almazan-Moga A, Sanchez de Toledo J, Gallego S. Notch, Wnt, and hedgehog pathways in rhabdomyosarcoma: from single pathways to an integrated network. Sarcoma. 2012;2012:695603.PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Wang X, Fu Y, Chen X, Ye J, Lu B, Ye F, et al. The expressions of bHLH gene HES1 and HES5 in advanced ovarian serous adenocarcinomas and their prognostic significance: a retrospective clinical study. J Cancer Res Clin Oncol. 2010;136(7):989–96.PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Wittekind C. 2010 TNM system: on the 7th edition of TNM classification of malignant tumors. Pathologe. 2010;31(5):331–2.PubMedCrossRefGoogle Scholar
  21. 21.
    Moghbeli M, Abbaszadegan MR, Farshchian M, Montazer M, Raeisossadati R, Abdollahi A, et al. Association of PYGO2 and EGFR in esophageal squamous cell carcinoma. Med Oncol. 2013;30(2):516.PubMedCrossRefGoogle Scholar
  22. 22.
    Rubie C, Kempf K, Hans J, Su T, Tilton B, Georg T, et al. Housekeeping gene variability in normal and cancerous colorectal, pancreatic, esophageal, gastric and hepatic tissues. Mol Cell Probes. 2005;19(2):101–9.PubMedCrossRefGoogle Scholar
  23. 23.
    Moghbeli M, Forghanifard MM, Aarabi A, Mansourian A, Abbaszadegan MR. Clinicopathological sex-related relevance of Musashi1 mRNA expression in esophageal squamous cell carcinoma patients. Pathol Oncol Res. 2014;20(2):427–33.Google Scholar
  24. 24.
    Edmunds RC, McIntyre JK, Luckenbach JA, Baldwin DH, Incardona JP. Toward enhanced MIQE compliance: reference residual normalization of qPCR gene expression data. J Biomol Tech. 2014;25(2):54–60.PubMedCentralPubMedGoogle Scholar
  25. 25.
    Politi K, Feirt N, Kitajewski J. Notch in mammary gland development and breast cancer. Semin Cancer Biol. 2004;14(5):341–7.PubMedCrossRefGoogle Scholar
  26. 26.
    Lee JB, Werbowetski-Ogilvie TE, Lee JH, McIntyre BA, Schnerch A, Hong SH, et al. Notch-HES1 signaling axis controls hemato-endothelial fate decisions of human embryonic and induced pluripotent stem cells. Blood. 2013;122(7):1162–73.PubMedCrossRefGoogle Scholar
  27. 27.
    Axelson H. The Notch signaling cascade in neuroblastoma: role of the basic helix-loop-helix proteins HASH-1 and HES-1. Cancer Lett. 2004;204(2):171–8.PubMedCrossRefGoogle Scholar
  28. 28.
    Miyazaki M, Kawamoto H, Kato Y, Itoi M, Miyazaki K, Masuda K, et al. Polycomb group gene mel-18 regulates early T progenitor expansion by maintaining the expression of Hes-1, a target of the Notch pathway. J Immunol. 2005;174(5):2507–16.PubMedCrossRefGoogle Scholar
  29. 29.
    Ross DA, Hannenhalli S, Tobias JW, Cooch N, Shiekhattar R, Kadesch T. Functional analysis of Hes-1 in preadipocytes. Mol Endocrinol. 2006;20(3):698–705.PubMedCrossRefGoogle Scholar
  30. 30.
    Shi Y, Sun G, Zhao C, Stewart R. Neural stem cell self-renewal. Crit Rev Oncol Hematol. 2008;65(1):43–53.PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Liu J, Ye F, Chen H, Lu W, Zhou C, Xie X. Expression of differentiation associated protein Hes1 and Hes5 in cervical squamous carcinoma and its precursors. Int J Gynecol Cancer. 2007;17(6):1293–9.PubMedCrossRefGoogle Scholar
  32. 32.
    Weng AP, Aster JC. Multiple niches for Notch in cancer: context is everything. Curr Opin Genet Dev. 2004;14(1):48–54.PubMedCrossRefGoogle Scholar
  33. 33.
    Axelson H. Notch signaling and cancer: emerging complexity. Semin Cancer Biol. 2004;14(5):317–9.PubMedCrossRefGoogle Scholar
  34. 34.
    Leong KG, Karsan A. Recent insights into the role of Notch signaling in tumorigenesis. Blood. 2006;107(6):2223–33.PubMedCrossRefGoogle Scholar
  35. 35.
    Nam Y, Aster JC, Blacklow SC. Notch signaling as a therapeutic target. Curr Opin Chem Biol. 2002;6(4):501–9.PubMedCrossRefGoogle Scholar
  36. 36.
    Beatus P, Lundkvist J, Oberg C, Lendahl U. The notch 3 intracellular domain represses notch 1-mediated activation through Hairy/Enhancer of split (HES) promoters. Development. 1999;126(17):3925–35.PubMedGoogle Scholar
  37. 37.
    Forghanifard MM, Moaven O, Farshchian M, Montazer M, Raeisossadati R, Abdollahi A, et al. Expression analysis elucidates the roles of MAML1 and Twist1 in esophageal squamous cell carcinoma aggressiveness and metastasis. Ann Surg Oncol. 2012;19(3):743–9.PubMedCrossRefGoogle Scholar
  38. 38.
    Sang L, Roberts JM, Coller HA. Hijacking HES1: how tumors co-opt the anti-differentiation strategies of quiescent cells. Trends Mol Med. 2010;16(1):17–26.Google Scholar
  39. 39.
    Katoh Y, Katoh M. Integrative genomic analyses on GLI1: positive regulation of GLI1 by Hedgehog-GLI, TGFbeta-Smads, and RTK-PI3K-AKT signals, and negative regulation of GLI1 by Notch-CSL-HES/HEY, and GPCR-Gs-PKA signals. Int J Oncol. 2009;35(1):187–92.PubMedCrossRefGoogle Scholar
  40. 40.
    Wall DS, Mears AJ, McNeill B, Mazerolle C, Thurig S, Wang Y, et al. Progenitor cell proliferation in the retina is dependent on Notch-independent Sonic hedgehog/Hes1 activity. J Cell Biol. 2009;184(1):101–12.PubMedCentralPubMedCrossRefGoogle Scholar
  41. 41.
    Kimura H, Kawasaki H, Taira K. Mouse microRNA-23b regulates expression of Hes1 gene in P19 cells. Nucleic Acids Symp Ser (Oxf). 2004;48:213–4.CrossRefGoogle Scholar
  42. 42.
    Wang C, Yao N, Lu CL, Li D, Ma X. Mouse microRNA-124 regulates the expression of Hes1 in P19 cells. Front Biosci (Elite Ed). 2010;2:127–32.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Shaghayegh Taleb
    • 1
    • 2
  • Mohammad Reza Abbaszadegan
    • 3
  • Meysam Moghbeli
    • 2
  • Nasim Hayati Roudbari
    • 1
  • Mohammad Mahdi Forghanifard
    • 4
  1. 1.Department of Biology, Sciences and Research BranchIslamic Azad UniversityTehranIran
  2. 2.Division of Human Genetics, Immunology Research Center, Avicenna Research InstituteMashhad University of Medical SciencesMashhadIran
  3. 3.Medical Genetics Research Center, Medical SchoolMashhad University of Medical SciencesMashhadIran
  4. 4.Department of BiologyDamghan Branch, Islamic Azad UniversityDamghanIran

Personalised recommendations