Skip to main content

Advertisement

Log in

HES1 as an Independent Prognostic Marker in Esophageal Squamous Cell Carcinoma

  • Original Research
  • Published:
Journal of Gastrointestinal Cancer Aims and scope Submit manuscript

Abstract

Background

Notch signaling is one of the main involved pathways in cell differentiation and organogenesis, and its deregulation may lead to tumorigenesis. In this pathway, targeted to the CSL (CBF1, Suppressor of Hairless or Lag-1) complex, notch intracellular domain (NICD) releases corepressors and recruits MAML1 as coactivator triggering the activation of notch signaling transcription complex. Hairy enhance of split-1 (HES1) is one of the notch signaling target genes which is a basic helix-loop-helix (bHLH) transcription factor acting as a proliferation stimulator through the suppression of cell cycle inhibitors such as p27 and p21.

Aims

In this study, we aimed to analyze the role of HES1 in the progression of esophageal squamous cell carcinoma (ESCC).

Methods

Messenger RNA (mRNA) expression of HES1 in fresh tumoral tissues and their margin normal samples were assessed in 50 ESCC patients by real-time polymerase chain reaction (RT-PCR).

Results

Thirteen out of 50 cases (26 %) had HES1 underexpression, while HES1 overexpression was observed only in 4 (8 %) samples. HES1 underexpression was significantly correlated with tumor depth of invasion (P = 0.035).

Conclusion

Although we have not observed any significant correlation between the HES1 expression and notch activation in ESCC, this study is the first report that elucidated the HES1 underexpression in ESCC and revealed its correlation with the invasiveness of ESCC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Forghanifard MM, Gholamin M, Farshchian M, Moaven O, Memar B, Forghani MN, et al. Cancer-testis gene expression profiling in esophageal squamous cell carcinoma: identification of specific tumor marker and potential targets for immunotherapy. Cancer Biol Ther. 2011;12(3):191–7.

    Article  CAS  PubMed  Google Scholar 

  2. Mousavi SM, Gouya MM, Ramazani R, Davanlou M, Hajsadeghi N, Seddighi Z. Cancer incidence and mortality in Iran. Ann Oncol. 2009;20(3):556–63.

    Article  CAS  PubMed  Google Scholar 

  3. Ingham PW, McMahon AP. Hedgehog signaling in animal development: paradigms and principles. Genes Dev. 2001;15(23):3059–87.

    Article  CAS  PubMed  Google Scholar 

  4. Nelson WJ, Nusse R. Convergence of Wnt, beta-catenin, and cadherin pathways. Science. 2004;303(5663):1483–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Nickoloff BJ, Osborne BA, Miele L. Notch signaling as a therapeutic target in cancer: a new approach to the development of cell fate modifying agents. Oncogene. 2003;22(42):6598–608.

    Article  CAS  PubMed  Google Scholar 

  6. Miele L. Notch signaling. Clin Cancer Res. 2006;12(4):1074–9.

    Article  CAS  PubMed  Google Scholar 

  7. Miele L, Miao H, Nickoloff BJ. NOTCH signaling as a novel cancer therapeutic target. Curr Cancer Drug Targets. 2006;6(4):313–23.

    Article  CAS  PubMed  Google Scholar 

  8. Rizzo P, Osipo C, Foreman K, Golde T, Osborne B, Miele L. Rational targeting of Notch signaling in cancer. Oncogene. 2008;27(38):5124–31.

    Article  CAS  PubMed  Google Scholar 

  9. Barolo S, Stone T, Bang AG, Posakony JW. Default repression and Notch signaling: Hairless acts as an adaptor to recruit the corepressors Groucho and dCtBP to Suppressor of Hairless. Genes Dev. 2002;16(15):1964–76.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Oswald F, Kostezka U, Astrahantseff K, Bourteele S, Dillinger K, Zechner U, et al. SHARP is a novel component of the Notch/RBP-Jkappa signalling pathway. EMBO J. 2002;21(20):5417–26.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Nakamura T, Tsuchiya K, Watanabe M. Crosstalk between Wnt and Notch signaling in intestinal epithelial cell fate decision. J Gastroenterol. 2007;42(9):705–10.

    Article  CAS  PubMed  Google Scholar 

  12. Osipo C, Golde TE, Osborne BA, Miele LA. Off the beaten pathway: the complex cross talk between Notch and NF-kappaB. Lab Invest. 2008;88(1):11–7.

    Article  CAS  PubMed  Google Scholar 

  13. Moghbeli M, Moghbeli F, Forghanifard MM, Garayali A, Abbaszadegan MR. Cancer stem cell markers in esophageal cancer. Am J Cancer Sci. 2013;2(1):37–50.

    Google Scholar 

  14. Wang Z, Li Y, Kong D, Ahmad A, Banerjee S, Sarkar FH. Cross-talk between miRNA and Notch signaling pathways in tumor development and progression. Cancer Lett. 2010;292(2):141–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Wang Z, Li Y, Banerjee S, Sarkar FH. Emerging role of Notch in stem cells and cancer. Cancer Lett. 2009;279(1):8–12.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. South AP, Cho RJ, Aster JC. The double-edged sword of Notch signaling in cancer. Semin Cell Dev Biol. 2012;23(4):458–64.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Ma J, Xia J, Miele L, Sarkar FH, Wang Z. Notch signaling pathway in pancreatic cancer progression. Pancreat Disord Ther. 2013;3(114).

  18. Roma J, Almazan-Moga A, Sanchez de Toledo J, Gallego S. Notch, Wnt, and hedgehog pathways in rhabdomyosarcoma: from single pathways to an integrated network. Sarcoma. 2012;2012:695603.

    Article  PubMed Central  PubMed  Google Scholar 

  19. Wang X, Fu Y, Chen X, Ye J, Lu B, Ye F, et al. The expressions of bHLH gene HES1 and HES5 in advanced ovarian serous adenocarcinomas and their prognostic significance: a retrospective clinical study. J Cancer Res Clin Oncol. 2010;136(7):989–96.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Wittekind C. 2010 TNM system: on the 7th edition of TNM classification of malignant tumors. Pathologe. 2010;31(5):331–2.

    Article  CAS  PubMed  Google Scholar 

  21. Moghbeli M, Abbaszadegan MR, Farshchian M, Montazer M, Raeisossadati R, Abdollahi A, et al. Association of PYGO2 and EGFR in esophageal squamous cell carcinoma. Med Oncol. 2013;30(2):516.

    Article  PubMed  Google Scholar 

  22. Rubie C, Kempf K, Hans J, Su T, Tilton B, Georg T, et al. Housekeeping gene variability in normal and cancerous colorectal, pancreatic, esophageal, gastric and hepatic tissues. Mol Cell Probes. 2005;19(2):101–9.

    Article  CAS  PubMed  Google Scholar 

  23. Moghbeli M, Forghanifard MM, Aarabi A, Mansourian A, Abbaszadegan MR. Clinicopathological sex-related relevance of Musashi1 mRNA expression in esophageal squamous cell carcinoma patients. Pathol Oncol Res. 2014;20(2):427–33.

  24. Edmunds RC, McIntyre JK, Luckenbach JA, Baldwin DH, Incardona JP. Toward enhanced MIQE compliance: reference residual normalization of qPCR gene expression data. J Biomol Tech. 2014;25(2):54–60.

    PubMed Central  PubMed  Google Scholar 

  25. Politi K, Feirt N, Kitajewski J. Notch in mammary gland development and breast cancer. Semin Cancer Biol. 2004;14(5):341–7.

    Article  CAS  PubMed  Google Scholar 

  26. Lee JB, Werbowetski-Ogilvie TE, Lee JH, McIntyre BA, Schnerch A, Hong SH, et al. Notch-HES1 signaling axis controls hemato-endothelial fate decisions of human embryonic and induced pluripotent stem cells. Blood. 2013;122(7):1162–73.

    Article  CAS  PubMed  Google Scholar 

  27. Axelson H. The Notch signaling cascade in neuroblastoma: role of the basic helix-loop-helix proteins HASH-1 and HES-1. Cancer Lett. 2004;204(2):171–8.

    Article  CAS  PubMed  Google Scholar 

  28. Miyazaki M, Kawamoto H, Kato Y, Itoi M, Miyazaki K, Masuda K, et al. Polycomb group gene mel-18 regulates early T progenitor expansion by maintaining the expression of Hes-1, a target of the Notch pathway. J Immunol. 2005;174(5):2507–16.

    Article  CAS  PubMed  Google Scholar 

  29. Ross DA, Hannenhalli S, Tobias JW, Cooch N, Shiekhattar R, Kadesch T. Functional analysis of Hes-1 in preadipocytes. Mol Endocrinol. 2006;20(3):698–705.

    Article  CAS  PubMed  Google Scholar 

  30. Shi Y, Sun G, Zhao C, Stewart R. Neural stem cell self-renewal. Crit Rev Oncol Hematol. 2008;65(1):43–53.

    Article  PubMed Central  PubMed  Google Scholar 

  31. Liu J, Ye F, Chen H, Lu W, Zhou C, Xie X. Expression of differentiation associated protein Hes1 and Hes5 in cervical squamous carcinoma and its precursors. Int J Gynecol Cancer. 2007;17(6):1293–9.

    Article  CAS  PubMed  Google Scholar 

  32. Weng AP, Aster JC. Multiple niches for Notch in cancer: context is everything. Curr Opin Genet Dev. 2004;14(1):48–54.

    Article  CAS  PubMed  Google Scholar 

  33. Axelson H. Notch signaling and cancer: emerging complexity. Semin Cancer Biol. 2004;14(5):317–9.

    Article  PubMed  Google Scholar 

  34. Leong KG, Karsan A. Recent insights into the role of Notch signaling in tumorigenesis. Blood. 2006;107(6):2223–33.

    Article  CAS  PubMed  Google Scholar 

  35. Nam Y, Aster JC, Blacklow SC. Notch signaling as a therapeutic target. Curr Opin Chem Biol. 2002;6(4):501–9.

    Article  CAS  PubMed  Google Scholar 

  36. Beatus P, Lundkvist J, Oberg C, Lendahl U. The notch 3 intracellular domain represses notch 1-mediated activation through Hairy/Enhancer of split (HES) promoters. Development. 1999;126(17):3925–35.

    CAS  PubMed  Google Scholar 

  37. Forghanifard MM, Moaven O, Farshchian M, Montazer M, Raeisossadati R, Abdollahi A, et al. Expression analysis elucidates the roles of MAML1 and Twist1 in esophageal squamous cell carcinoma aggressiveness and metastasis. Ann Surg Oncol. 2012;19(3):743–9.

    Article  PubMed  Google Scholar 

  38. Sang L, Roberts JM, Coller HA. Hijacking HES1: how tumors co-opt the anti-differentiation strategies of quiescent cells. Trends Mol Med. 2010;16(1):17–26.

  39. Katoh Y, Katoh M. Integrative genomic analyses on GLI1: positive regulation of GLI1 by Hedgehog-GLI, TGFbeta-Smads, and RTK-PI3K-AKT signals, and negative regulation of GLI1 by Notch-CSL-HES/HEY, and GPCR-Gs-PKA signals. Int J Oncol. 2009;35(1):187–92.

    Article  CAS  PubMed  Google Scholar 

  40. Wall DS, Mears AJ, McNeill B, Mazerolle C, Thurig S, Wang Y, et al. Progenitor cell proliferation in the retina is dependent on Notch-independent Sonic hedgehog/Hes1 activity. J Cell Biol. 2009;184(1):101–12.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Kimura H, Kawasaki H, Taira K. Mouse microRNA-23b regulates expression of Hes1 gene in P19 cells. Nucleic Acids Symp Ser (Oxf). 2004;48:213–4.

    Article  Google Scholar 

  42. Wang C, Yao N, Lu CL, Li D, Ma X. Mouse microRNA-124 regulates the expression of Hes1 in P19 cells. Front Biosci (Elite Ed). 2010;2:127–32.

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the colleagues at the Division of Human Genetics and Department of Surgery and Pathology of Emam Reza and Omid Hospitals (MUMS) for their assistances in gathering and preparing the ESCC samples.

Conflict of Interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Mahdi Forghanifard.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taleb, S., Abbaszadegan, M.R., Moghbeli, M. et al. HES1 as an Independent Prognostic Marker in Esophageal Squamous Cell Carcinoma. J Gastrointest Canc 45, 466–471 (2014). https://doi.org/10.1007/s12029-014-9648-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12029-014-9648-1

Keywords

Navigation