Skip to main content

Advertisement

Log in

Genetic Variations in Stem Cell-Related Genes and Colorectal Cancer Prognosis

  • Original Research
  • Published:
Journal of Gastrointestinal Cancer Aims and scope Submit manuscript

Abstract

Background

Many properties of cancer cells are reminiscent of those in normal stem cells. Genes important to stem cell development have been significantly implicated in the etiology and clinical outcome of colorectal cancer (CRC). However, the associations of genetic variations in these genes with CRC prognosis have not yet been elucidated.

Methods

We analyzed the effects of eight potentially functional single nucleotide polymorphisms (SNPs) in six stem cell-related genes on the prognosis of a well-characterized population of 380 Chinese CRC patients diagnosed from February 2006 to January 2010.

Results

The most significant finding was related to rs879882, a variant in the 5′ region of POU5F1 gene which encodes a protein essential for embryonic stem cell self-renewal and pluripotency, and induced pluripotent stem cell reprogramming. The variant-containing genotypes of rs879882 were associated with an increased risk of recurrence (hazard ratio [HR] = 2.10, 95 % confidence interval [CI] 1.17–3.76, P = 0.01). In chemotherapy-stratified analysis, the association remained borderline significant in patients receiving chemotherapy (HR = 1.97, 95 % CI 0.89–4.34, P = 0.09). In addition, a nonsynonymous SNP of APC gene was also significantly associated with recurrence risk in chemotherapy-treated patients (HR = 2.63, 95 % CI 1.14–6.06 P = 0.02). Further analyses showed a combined effect of the two SNPs in predicting CRC recurrence in patients receiving chemotherapy (P = 0.04) but not in those without chemotherapy (P = 0.43). Moreover, an exploratory multivariate assessment model indicated that these two variants enhanced the power to predict recurrence after chemotherapy.

Conclusion

We presented one of the first epidemiologic studies showing that stem cell-related genetic variants may impact CRC clinical outcomes, especially in chemotherapy-treated patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Center MM, Jemal A, Smith RA, Ward E. Worldwide variations in colorectal cancer. CA Cancer J Clin. 2009;59(6):366–78.

    Article  PubMed  Google Scholar 

  2. Jemal A, Siegel R, Ward E, Hao Y, Xu J, Murray T, Thun MJ. Cancer statistics, 2008. CA Cancer J Clin. 2008;58(2):71–96.

    Article  PubMed  Google Scholar 

  3. Compton CC, Fielding LP, Burgart LJ, Conley B, Cooper HS, Hamilton SR, Hammond ME, Henson DE, Hutter RV, Nagle RB, Nielsen ML, Sargent DJ, Taylor CR, Welton M, Willett C. Prognostic factors in colorectal cancer. College of American Pathologists Consensus Statement 1999. Arch Pathol Lab Med. 2000;124(7):979–94.

    PubMed  CAS  Google Scholar 

  4. Jeffery M, Hickey BE, Hider PN. Follow-up strategies for patients treated for non-metastatic colorectal cancer. Cochrane Database Syst Rev. 2007;(1):CD002200.

  5. Relling MV, Dervieux T. Pharmacogenetics and cancer therapy. Nat Rev Cancer. 2001;1(2):99–108.

    Article  PubMed  CAS  Google Scholar 

  6. Johnson JA. Pharmacogenetics: potential for individualized drug therapy through genetics. Trends Genet. 2003;19(11):660–6.

    Article  PubMed  CAS  Google Scholar 

  7. Yang JJ, Cheng C, Yang W, Pei D, Cao X, Fan Y, Pounds SB, Neale G, Trevino LR, French D, Campana D, Downing JR, Evans WE, Pui CH, Devidas M, Bowman WP, Camitta BM, Willman CL, Davies SM, Borowitz MJ, Carroll WL, Hunger SP, Relling MV. Genome-wide interrogation of germline genetic variation associated with treatment response in childhood acute lymphoblastic leukemia. JAMA. 2009;301(4):393–403.

    Article  PubMed  CAS  Google Scholar 

  8. Ge D, Fellay J, Thompson AJ, Simon JS, Shianna KV, Urban TJ, Heinzen EL, Qiu P, Bertelsen AH, Muir AJ, Sulkowski M, McHutchison JG, Goldstein DB. Genetic variation in IL28B predicts hepatitis C treatment-induced viral clearance. Nature. 2009;461(7262):399–401.

    Article  PubMed  CAS  Google Scholar 

  9. Tanaka Y, Nishida N, Sugiyama M, Kurosaki M, Matsuura K, Sakamoto N, Nakagawa M, Korenaga M, Hino K, Hige S, Ito Y, Mita E, Tanaka E, Mochida S, Murawaki Y, Honda M, Sakai A, Hiasa Y, Nishiguchi S, Koike A, Sakaida I, Imamura M, Ito K, Yano K, Masaki N, Sugauchi F, Izumi N, Tokunaga K, Mizokami M. Genome-wide association of IL28B with response to pegylated interferon-alpha and ribavirin therapy for chronic hepatitis C. Nat Genet. 2009;41(10):1105–9.

    Article  PubMed  CAS  Google Scholar 

  10. Suppiah V, Moldovan M, Ahlenstiel G, Berg T, Weltman M, Abate ML, Bassendine M, Spengler U, Dore GJ, Powell E, Riordan S, Sheridan D, Smedile A, Fragomeli V, Muller T, Bahlo M, Stewart GJ, Booth DR, George J. IL28B is associated with response to chronic hepatitis C interferon-alpha and ribavirin therapy. Nat Genet. 2009;41(10):1100–4.

    Article  PubMed  CAS  Google Scholar 

  11. Maitland ML, Vasisht K, Ratain MJ. TPMT, UGT1A1 and DPYD: genotyping to ensure safer cancer therapy? Trends Pharmacol Sci. 2006;27(8):432–7.

    Article  PubMed  CAS  Google Scholar 

  12. Mayhall EA, Paffett-Lugassy N, Zon LI. The clinical potential of stem cells. Curr Opin Cell Biol. 2004;16(6):713–20.

    Article  PubMed  CAS  Google Scholar 

  13. Lapidot T, Sirard C, Vormoor J, Murdoch B, Hoang T, Caceres-Cortes J, Minden M, Paterson B, Caligiuri MA, Dick JE. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature. 1994;367(6464):645–8.

    Article  PubMed  CAS  Google Scholar 

  14. Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A. 2003;100(7):3983–8.

    Article  PubMed  CAS  Google Scholar 

  15. Singh SK, Clarke ID, Terasaki M, Bonn VE, Hawkins C, Squire J, Dirks PB. Identification of a cancer stem cell in human brain tumors. Cancer Res. 2003;63(18):5821–8.

    PubMed  CAS  Google Scholar 

  16. Yang ZF, Ho DW, Ng MN, Lau CK, Yu WC, Ngai P, Chu PW, Lam CT, Poon RT, Fan ST. Significance of CD90+ cancer stem cells in human liver cancer. Cancer Cell. 2008;13(2):153–66.

    Article  PubMed  CAS  Google Scholar 

  17. Kim CF, Jackson EL, Woolfenden AE, Lawrence S, Babar I, Vogel S, Crowley D, Bronson RT, Jacks T. Identification of bronchioalveolar stem cells in normal lung and lung cancer. Cell. 2005;121(6):823–35.

    Article  PubMed  CAS  Google Scholar 

  18. Li C, Heidt DG, Dalerba P, Burant CF, Zhang L, Adsay V, Wicha M, Clarke MF, Simeone DM. Identification of pancreatic cancer stem cells. Cancer Res. 2007;67(3):1030–7.

    Article  PubMed  CAS  Google Scholar 

  19. Hubbard SA, Friel AM, Kumar B, Zhang L, Rueda BR, Gargett CE. Evidence for cancer stem cells in human endometrial carcinoma. Cancer Res. 2009;69(21):8241–8.

    Article  PubMed  CAS  Google Scholar 

  20. O’Brien CA, Pollett A, Gallinger S, Dick JE. A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature. 2007;445(7123):106–10.

    Article  PubMed  Google Scholar 

  21. Clarke MF, Dick JE, Dirks PB, Eaves CJ, Jamieson CH, Jones DL, Visvader J, Weissman IL, Wahl GM. Cancer stem cells—perspectives on current status and future directions: AACR Workshop on cancer stem cells. Cancer Res. 2006;66(19):9339–44.

    Article  PubMed  CAS  Google Scholar 

  22. Jordan CT, Guzman ML, Noble M. Cancer stem cells. N Engl J Med. 2006;355(12):1253–61.

    Article  PubMed  CAS  Google Scholar 

  23. Rich JN. Cancer stem cells in radiation resistance. Cancer Res. 2007;67(19):8980–4.

    Article  PubMed  CAS  Google Scholar 

  24. Bao S, Wu Q, McLendon RE, Hao Y, Shi Q, Hjelmeland AB, Dewhirst MW, Bigner DD, Rich JN. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature. 2006;444(7120):756–60.

    Article  PubMed  CAS  Google Scholar 

  25. Zhou BB, Zhang H, Damelin M, Geles KG, Grindley JC, Dirks PB. Tumour-initiating cells: challenges and opportunities for anticancer drug discovery. Nat Rev Drug Dis. 2009;8(10):806–23.

    Article  CAS  Google Scholar 

  26. van den Brink GR, Offerhaus GJ. The morphogenetic code and colon cancer development. Cancer Cell. 2007;11(2):109–17.

    Article  PubMed  Google Scholar 

  27. Radtke F, Clevers H. Self-renewal and cancer of the gut: two sides of a coin. Science. 2005;307(5717):1904–9.

    Article  PubMed  CAS  Google Scholar 

  28. Pasche B, Mulcahy M, Benson 3rd AB. Molecular markers in prognosis of colorectal cancer and prediction of response to treatment. Best Pract Res Clin Gastroenterol. 2002;16(2):331–45.

    Article  PubMed  CAS  Google Scholar 

  29. Fritzmann J, Morkel M, Besser D, Budczies J, Kosel F, Brembeck FH, Stein U, Fichtner I, Schlag PM, Birchmeier W. A colorectal cancer expression profile that includes transforming growth factor beta inhibitor BAMBI predicts metastatic potential. Gastroenterology. 2009;137(1):165–75.

    Article  PubMed  CAS  Google Scholar 

  30. Lugli A, Zlobec I, Minoo P, Baker K, Tornillo L, Terracciano L, Jass JR. Prognostic significance of the wnt signalling pathway molecules APC, beta-catenin and E-cadherin in colorectal cancer: a tissue microarray-based analysis. Histopathology. 2007;50(4):453–64.

    Article  PubMed  CAS  Google Scholar 

  31. Valle L, Serena-Acedo T, Liyanarachchi S, Hampel H, Comeras I, Li Z, Zeng Q, Zhang HT, Pennison MJ, Sadim M, Pasche B, Tanner SM, de la Chapelle A. Germline allele-specific expression of TGFBR1 confers an increased risk of colorectal cancer. Science. 2008;321(5894):1361–5.

    Article  PubMed  CAS  Google Scholar 

  32. Berndt SI, Huang WY, Yeager M, Weissfeld JL, Chanock SJ, Hayes RB. Genetic variants in frizzled-related protein (FRZB) and the risk of colorectal neoplasia. Cancer Causes Control. 2009;20(4):487–90.

    Article  PubMed  Google Scholar 

  33. Egan JB, Jacobs ET, Martinez ME, Gerner EW, Jurutka PW, Thompson PA. Presence of a TA haplotype in the APC gene containing the common 1822 polymorphism and colorectal adenoma. Cancer Res. 2008;68(14):6006–13.

    Article  PubMed  CAS  Google Scholar 

  34. Hazra A, Fuchs CS, Chan AT, Giovannucci EL, Hunter DJ. Association of the TCF7L2 polymorphism with colorectal cancer and adenoma risk. Cancer Causes Control. 2008;19(9):975–80.

    Article  PubMed  Google Scholar 

  35. Slattery ML, Folsom AR, Wolff R, Herrick J, Caan BJ, Potter JD. Transcription factor 7-like 2 polymorphism and colon cancer. Cancer Epidemiol Biomarkers Prev. 2008;17(4):978–82.

    Article  PubMed  CAS  Google Scholar 

  36. Xu Y, Pasche B. TGF-beta signaling alterations and susceptibility to colorectal cancer. Hum Mol Genet. 2007;16(Spec No 1):R14–20.

    Article  PubMed  CAS  Google Scholar 

  37. Bian Y, Caldes T, Wijnen J, Franken P, Vasen H, Kaklamani V, Nafa K, Peterlongo P, Ellis N, Baron JA, Burn J, Moeslein G, Morrison PJ, Chen Y, Ahsan H, Watson P, Lynch HT, de la Chapelle A, Fodde R, Pasche B. TGFBR1*6A may contribute to hereditary colorectal cancer. J Clin Oncol. 2005;23(13):3074–8.

    Article  PubMed  CAS  Google Scholar 

  38. Rosman DS, Phukan S, Huang CC, Pasche B. TGFBR1*6A enhances the migration and invasion of MCF-7 breast cancer cells through RhoA activation. Cancer Res. 2008;68(5):1319–28.

    Article  PubMed  CAS  Google Scholar 

  39. Lei Z, Liu RY, Zhao J, Liu Z, Jiang X, You W, Chen XF, Liu X, Zhang K, Pasche B, Zhang HT. TGFBR1 haplotypes and risk of non-small-cell lung cancer. Cancer Res. 2009;69(17):7046–52.

    Article  PubMed  CAS  Google Scholar 

  40. Ashton-Rickardt PG, Dunlop MG, Nakamura Y, Morris RG, Purdie CA, Steel CM, Evans HJ, Bird CC, Wyllie AH. High frequency of APC loss in sporadic colorectal carcinoma due to breaks clustered in 5q21-22. Oncogene. 1989;4(10):1169–74.

    PubMed  CAS  Google Scholar 

  41. Klaus A, Birchmeier W. Wnt signalling and its impact on development and cancer. Nat Rev Cancer. 2008;8(5):387–98.

    Article  PubMed  CAS  Google Scholar 

  42. Massague J. TGFbeta in cancer. Cell. 2008;134(2):215–30.

    Article  PubMed  CAS  Google Scholar 

  43. Niwa H, Miyazaki J, Smith AG. Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells. Nat Genet. 2000;24(4):372–6.

    Article  PubMed  CAS  Google Scholar 

  44. Rodriguez RT, Velkey JM, Lutzko C, Seerke R, Kohn DB, O’Shea KS, Firpo MT. Manipulation of OCT4 levels in human embryonic stem cells results in induction of differential cell types. Exp Biol Med (Maywood). 2007;232(10):1368–80.

    Article  CAS  Google Scholar 

  45. Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, Nie J, Jonsdottir GA, Ruotti V, Stewart R, Slukvin II, Thomson JA. Induced pluripotent stem cell lines derived from human somatic cells. Science. 2007;318(5858):1917–20.

    Article  PubMed  CAS  Google Scholar 

  46. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126(4):663–76.

    Article  PubMed  CAS  Google Scholar 

  47. Park IH, Zhao R, West JA, Yabuuchi A, Huo H, Ince TA, Lerou PH, Lensch MW, Daley GQ. Reprogramming of human somatic cells to pluripotency with defined factors. Nature. 2008;451(7175):141–6.

    Article  PubMed  CAS  Google Scholar 

  48. Kim JB, Sebastiano V, Wu G, Arauzo-Bravo MJ, Sasse P, Gentile L, Ko K, Ruau D, Ehrich M, van den Boom D, Meyer J, Hubner K, Bernemann C, Ortmeier C, Zenke M, Fleischmann BK, Zaehres H, Scholer HR. Oct4-induced pluripotency in adult neural stem cells. Cell. 2009;136(3):411–9.

    Article  PubMed  CAS  Google Scholar 

  49. Kim JB, Zaehres H, Wu G, Gentile L, Ko K, Sebastiano V, Arauzo-Bravo MJ, Ruau D, Han DW, Zenke M, Scholer HR. Pluripotent stem cells induced from adult neural stem cells by reprogramming with two factors. Nature. 2008;454(7204):646–50.

    Article  PubMed  CAS  Google Scholar 

  50. Saigusa S, Tanaka K, Toiyama Y, Yokoe T, Okugawa Y, Ioue Y, Miki C, Kusunoki M. Correlation of CD133, OCT4, and SOX2 in rectal cancer and their association with distant recurrence after chemoradiotherapy. Ann Surg Oncol. 2009;16(12):3488–98.

    Article  PubMed  Google Scholar 

  51. Katoh Y, Katoh M. Conserved POU-binding site linked to SP1-binding site within FZD5 promoter: transcriptional mechanisms of FZD5 in undifferentiated human ES cells, fetal liver/spleen, adult colon, pancreatic islet, and diffuse-type gastric cancer. Int J Oncol. 2007;30(3):751–5.

    PubMed  CAS  Google Scholar 

  52. Ku JL, Shin YK, Kim DW, Kim KH, Choi JS, Hong SH, Jeon YK, Kim SH, Kim HS, Park JH, Kim IJ, Park JG. Establishment and characterization of 13 human colorectal carcinoma cell lines: mutations of genes and expressions of drug sensitivity genes and cancer stem cell markers. Carcinogenesis. 2010;31(6):1003–9.

    Article  PubMed  CAS  Google Scholar 

  53. Yokoo S, Masuda S, Yonezawa A, Terada T, Katsura T, Inui K. Significance of organic cation transporter 3 (SLC22A3) expression for the cytotoxic effect of oxaliplatin in colorectal cancer. Drug Metab Dispos. 2008;36(11):2299–306.

    Article  PubMed  CAS  Google Scholar 

  54. Nordhoff V, Hubner K, Bauer A, Orlova I, Malapetsa A, Scholer HR. Comparative analysis of human, bovine, and murine Oct-4 upstream promoter sequences. Mamm Genome. 2001;12(4):309–17.

    Article  PubMed  CAS  Google Scholar 

  55. Conde L, Vaquerizas JM, Dopazo H, Arbiza L, Reumers J, Rousseau F, Schymkowitz J, Dopazo J. PupaSuite: finding functional single nucleotide polymorphisms for large-scale genotyping purposes. Nucleic Acids Res. 2006;34(Web Server issue):W621–5.

    Article  PubMed  CAS  Google Scholar 

  56. Kinzler KW, Vogelstein B. Lessons from hereditary colorectal cancer. Cell. 1996;87(2):159–70.

    Article  PubMed  CAS  Google Scholar 

  57. Walther A, Johnstone E, Swanton C, Midgley R, Tomlinson I, Kerr D. Genetic prognostic and predictive markers in colorectal cancer. Nat Rev Cancer. 2009;9(7):489–99.

    Article  PubMed  CAS  Google Scholar 

  58. Floyd RA, Towner RA, Wu D, Abbott A, Cranford R, Branch D, Guo WX, Foster SB, Jones I, Alam R, Moore D, Allen T, Huycke M. Anti-cancer activity of nitrones in the Apc(Min/+) model of colorectal cancer. Free Radic Res. 2010;44(1):108–17.

    Article  PubMed  CAS  Google Scholar 

  59. Chen SP, Chiu SC, Wu CC, Lin SZ, Kang JC, Chen YL, Lin PC, Pang CY, Harn HJ. The association of methylation in the promoter of APC and MGMT and the prognosis of Taiwanese CRC patients. Genet Test Mol Biomarkers. 2009;13(1):67–71.

    Article  PubMed  CAS  Google Scholar 

  60. Chen SP, Wu CC, Lin SZ, Kang JC, Su CC, Chen YL, Lin PC, Chiu SC, Pang CY, Harn HJ. Prognostic significance of interaction between somatic APC mutations and 5-fluorouracil adjuvant chemotherapy in Taiwanese colorectal cancer subjects. Am J Clin Oncol. 2009;32(2):122–6.

    Article  PubMed  CAS  Google Scholar 

  61. Tranah GJ, Giovannucci E, Ma J, Fuchs C, Hunter DJ. APC Asp1822Val and Gly2502Ser polymorphisms and risk of colorectal cancer and adenoma. Cancer Epidemiol Biomarkers Prev. 2005;14(4):863–70.

    Article  PubMed  CAS  Google Scholar 

  62. Theodoratou E, Campbell H, Tenesa A, McNeill G, Cetnarskyj R, Barnetson RA, Porteous ME, Dunlop MG, Farrington SM. Modification of the associations between lifestyle, dietary factors and colorectal cancer risk by APC variants. Carcinogenesis. 2008;29(9):1774–80.

    Article  PubMed  CAS  Google Scholar 

  63. Menendez M, Gonzalez S, Blanco I, Guino E, Peris M, Peinado MA, Capella G, Moreno V. Colorectal cancer risk and the APC D1822V variant. Int J Cancer. 2004;112(1):161–3.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The work reported here was supported by a start-up grant from Thomas Jefferson University, grant 2009CB521704 from The National Basic Research Program of China, and grant 30872927 from the National Natural Science Foundation of China.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hushan Yang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 31 kb)

Supplementary Table 1

Stem cell-related genes and polymorphisms evaluated in this study (DOC 42 kb)

Supplementary Table 2

Demographic and clinicopathological characteristics of patients with colorectal cancer (DOC 69 kb)

Supplementary Table 3

Joint effects between rs8798822 and rs459552 risk genotypes in recurrence of colorectal cancer patients stratified by chemotherapy (DOC 42 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, H., Qu, F., Myers, R.E. et al. Genetic Variations in Stem Cell-Related Genes and Colorectal Cancer Prognosis. J Gastrointest Canc 43, 584–593 (2012). https://doi.org/10.1007/s12029-012-9388-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12029-012-9388-z

Keywords

Navigation