Skip to main content

Advertisement

Log in

Characterization of the CXCR4 Signaling in Pancreatic Cancer Cells

  • Published:
Journal of Gastrointestinal Cancer Aims and scope Submit manuscript

Abstract

CXCL12 and its receptor, CXCR4, are emerging as promising targets for modulating growth, angiogenesis, and metastasis in several human cancers. Indeed, blocking the receptor is sufficient to prevent metastasis and angiogenesis in experimental breast cancer xenografts. Recently, the biological effect of the CXCR4 in pancreatic cancer, one of the most deadly neoplastic diseases, has been reported. However, the molecular mechanism by which CXCR4 contributes to these properties is not completely understood. In this paper, we characterize the signaling pathways activated by CXCR4 in pancreatic cancer. We show that after CXCR4 activation, EGFR becomes tyrosine phosphorylated, and the kinase activity of this receptor, together with the activation of MMPs, Src, and PI3-Kinase, is required for CXCR4-mediated ERK activation. Analysis of this cascade in pancreatic cancer cells revealed that the ERK-mediated pathway regulates genes involved in angiogenesis, such as VEGF, CD44, HIF1α, and IL-8. Furthermore, ERK blockage inhibits the migration and tube formation of endothelial cells induced by CXCL12. Considering that inhibitors for several components of this pathway, including CXCR4 itself, are at different stages of clinical trials, this study provides theoretical justification for the clinical testing of these drugs in pancreatic cancer, thus extending the list of potential targets for treating this dismal disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Jaffee EM, Hruban RH, Canto M, Kern SE. Focus on pancreas cancer. Cancer Cell 2002;2:25–8.

    Article  PubMed  CAS  Google Scholar 

  2. Folkman J. Role of angiogenesis in tumor growth and metastasis. Semin Oncol 2002;29:15–8.

    PubMed  CAS  Google Scholar 

  3. MacKenzie MJ. Molecular therapy in pancreatic adenocarcinoma. Lancet Oncol 2004;5:541–9.

    Article  PubMed  CAS  Google Scholar 

  4. Fisher WE, Berger DH. Angiogenesis and antiangiogenic strategies in pancreatic cancer. Int J Gastrointest Cancer 2003;33:79–88.

    Article  PubMed  Google Scholar 

  5. Zlotnik A. Chemokines in neoplastic progression. Semin Cancer Biol 2004;14:181–5.

    Article  PubMed  CAS  Google Scholar 

  6. Balkwill F. The significance of cancer cell expression of the chemokine receptor CXCR4. Semin Cancer Biol 2004;14:171–9.

    Article  PubMed  CAS  Google Scholar 

  7. Epstein RJ. The CXCL12–CXCR4 chemotactic pathway as a target of adjuvant breast cancer therapies. Nat Rev Cancer 2004;4:901–9.

    Article  PubMed  CAS  Google Scholar 

  8. Marchesi F, Monti P, Leone BE, Zerbi A, Vecchi A, Piemonti L, et al. Increased survival, proliferation, and migration in metastatic human pancreatic tumor cells expressing functional CXCR4. Cancer Res 2004;64:8420–7.

    Article  PubMed  CAS  Google Scholar 

  9. Sato N, Matsubayashi H, Fukushima N, Goggins M. The Chemokine Receptor CXCR4 is Regulated by DNA Methylation in Pancreatic Cancer. Cancer Biol Ther 2005;4:070–6.

    Article  CAS  Google Scholar 

  10. Koshiba T, Hosotani R, Miyamoto Y, Ida J, Tsuji S, Nakajima S, et al. Expression of stromal cell-derived factor 1 and CXCR4 ligand receptor system in pancreatic cancer: a possible role for tumor progression. Clin Cancer Res 2000;6:3530–5.

    PubMed  CAS  Google Scholar 

  11. Kucia M, Jankowski K, Reca R, Wysoczynski M, Bandura L, Allendorf DJ, et al. CXCR4-SDF-1 signalling, locomotion, chemotaxis and adhesion. J Mol Histol 2004;35:233–45.

    Article  PubMed  CAS  Google Scholar 

  12. Lataillade JJ, Domenech J, Le Bousse-Kerdiles MC. Stromal cell-derived factor-1 (SDF-1)\CXCR4 couple plays multiple roles on haematopoietic progenitors at the border between the old cytokine and new chemokine worlds: survival, cell cycling and trafficking. Eur Cytokine Netw 2004;15:177–88.

    PubMed  CAS  Google Scholar 

  13. Salvucci O, Yao L, Villalba S, Sajewicz A, Pittaluga S, Tosato G. Regulation of endothelial cell branching morphogenesis by endogenous chemokine stromal-derived factor-1. Blood 2002;99:2703–11.

    Article  PubMed  CAS  Google Scholar 

  14. De Falco E, Porcelli D, Torella AR, Straino S, Iachininoto MG, Orlandi A, et al. SDF-1 involvement in endothelial phenotype and ischemia-induced recruitment of bone marrow progenitor cells. Blood 2004;104:3472–82.

    Article  PubMed  CAS  Google Scholar 

  15. Lee JS, Kang-Decker N, Chatterjee S, Yao J, Friedman S, Shah V. Mechanism of nitric oxide interplay with Rho GTPase family members in modulation of actin membrane dynamics in pericyte and fibroblast. Am J Pathol 2005;166:1861–70.

    PubMed  CAS  Google Scholar 

  16. Yamakawa M, Liu LX, Belanger AJ, Date T, Kuriyama T, Goldberg MA, et al. Expression of angiopoietins in renal epithelial and clear cell carcinoma cells: regulation by hypoxia and participation in angiogenesis. Am J Physiol Renal Physiol 2004;287:F649–57.

    Article  PubMed  CAS  Google Scholar 

  17. Fernandez-Zapico ME, Mladek A, Ellenrieder V, Folch-Puy E, Miller L, Urrutia R. An mSin3A interaction domain links the transcriptional activity of KLF11 with its role in growth regulation. EMBO J 2003;22:4748–58.

    Article  PubMed  CAS  Google Scholar 

  18. Bruns CJ, Harbison MT, Kuniyasu H, Eue I, Fidler IJ. In vivo selection and characterization of metastatic variants from human pancreatic adenocarcinoma by using orthotopic implantation in nude mice. Neoplasia 1999;1:50–62.

    Article  PubMed  CAS  Google Scholar 

  19. Muller A, Homey B, Soto H, Ge N, Catron D, Buchanan ME, et al. Involvement of chemokine receptors in breast cancer metastasis. Nature 2001;410:50–6.

    Article  PubMed  CAS  Google Scholar 

  20. Tilton B, Ho L, Oberlin E, Loetscher P, Baleux F, Clark-Lewis I, et al. Signal transduction by CXC chemokine receptor 4. Stromal cell-derived factor 1 stimulates prolonged protein kinase B and extracellular signal-regulated kinase 2 activation in T lymphocytes. J Exp Med 2000;192:313–24.

    Article  PubMed  CAS  Google Scholar 

  21. Majka M, Ratajczak J, Kowalska MA, Ratajczak MZ. Binding of stromal derived factor-1alpha (SDF-1alpha) to CXCR4 chemokine receptor in normal human megakaryoblasts but not in platelets induces phosphorylation of mitogen-activated protein kinase p42/44 (MAPK), ELK-1 transcription factor and serine/threonine kinase AKT. Eur J Haematol 2000;64:164–72.

    Article  PubMed  CAS  Google Scholar 

  22. Kremer KN, Humphreys TD, Kumar A, Qian NX, Hedin KE. Distinct role of ZAP-70 and Src homology 2 domain-containing leukocyte protein of 76 kDa in the prolonged activation of extracellular signal-regulated protein kinase by the stromal cell-derived factor-1 alpha/CXCL12 chemokine. J Immunol 2003;171:360–7.

    PubMed  CAS  Google Scholar 

  23. Reddy KB, Nabha SM, Atanaskova N. Role of MAP kinase in tumor progression and invasion. Cancer Metastasis Rev 2003;22:395–403.

    Article  PubMed  CAS  Google Scholar 

  24. The ERK cascade as a prototype of MAPK signaling pathways. Methods Mol Biol 2004;250:1–28.

  25. Hood JD, Frausto R, Kiosses WB, Schwartz MA, Cheresh DA. Differential alphav integrin-mediated Ras-ERK signaling during two pathways of angiogenesis. J Cell Biol 2003;162:933–43.

    Article  PubMed  CAS  Google Scholar 

  26. Babcock GJ, Farzan M, Sodroski J. Ligand-independent dimerization of CXCR4, a principal HIV-1 coreceptor. J Biol Chem 2003;278:3378–85.

    Article  PubMed  CAS  Google Scholar 

  27. Vila-Coro AJ, Rodriguez-Frade JM, Martin De Ana A, Moreno-Ortiz MC, Martinez-A C, Mellado M. The chemokine SDF-1alpha triggers CXCR4 receptor dimerization and activates the JAK/STAT pathway. FASEB J 1999;13:1699–710.

    PubMed  CAS  Google Scholar 

  28. Xiong HQ, Abbruzzese JL. Epidermal growth factor receptor-targeted therapy for pancreatic cancer. Semin Oncol 2002;29:31–7.

    PubMed  CAS  Google Scholar 

  29. Santiskulvong C, Rozengurt E. Galardin (GM 6001), a broad-spectrum matrix metalloproteinase inhibitor, blocks bombesin- and LPA-induced EGF receptor transactivation and DNA synthesis in rat-1 cells. Exp Cell Res 2003;290:437–46.

    Article  PubMed  CAS  Google Scholar 

  30. Roelle S, Grosse R, Aigner A, Krell HW, Czubayko F, Gudermann T. Matrix metalloproteinases 2 and 9 mediate epidermal growth factor receptor transactivation by gonadotropin-releasing hormone. J Biol Chem 2003;278:47307–18.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

We would like to thank Dr. Martin Fernandez-Zapico, Paula Carlson, Christopher Kolbert, Sharon Delgado, Launice Melbourne, Humberto Martinez-Suarez, Dr. Alexandrine Randriamahefa, Michael Lin, and Linda Wellik for the technical assistance. This work was supported by the Lustgarten Foundation for Pancreatic Cancer Research, National Institute of Health RO1 grant DK52913 and DK56620, the Miles and Shirely Fitterman Funds for Mayo GIH Proteomics and Genomics Studies (R. Urrutia), RO1 Grant GM59763 (K.E. Hedin), RO1 grant 59388 (V. Shah) and Specialized Program of Research Excellence grant P50-CA102701 (D.D. Billadeau, K.E. Hedin, V. Shah and R. Urrutia) and the Mayo Clinic College of Medicine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raul Urrutia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Billadeau, D.D., Chatterjee, S., Bramati, P. et al. Characterization of the CXCR4 Signaling in Pancreatic Cancer Cells. J Gastrointest Canc 37, 110–119 (2006). https://doi.org/10.1007/s12029-007-0011-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12029-007-0011-7

Keywords

Navigation