Skip to main content

Advertisement

Log in

Early Low Pulse Pressure in VA-ECMO Is Associated with Acute Brain Injury

  • Original work
  • Published:
Neurocritical Care Aims and scope Submit manuscript

Abstract

Background

Pulse pressure is a dynamic marker of cardiovascular function and is often impaired in patients on venoarterial extracorporeal membrane oxygenation (VA-ECMO). Pulsatile blood flow also serves as a regulator of vascular endothelium, and continuous-flow mechanical circulatory support can lead to endothelial dysfunction. We explored the impact of early low pulse pressure on occurrence of acute brain injury (ABI) in VA-ECMO.

Methods

We conducted a retrospective analysis of adults with VA-ECMO at a tertiary care center between July 2016 and January 2021. Patients underwent standardized multimodal neuromonitoring throughout ECMO support. ABI included intracranial hemorrhage, ischemic stroke, hypoxic ischemic brain injury, cerebral edema, seizure, and brain death. Blood pressures were recorded every 15 min. Low pulse pressure was defined as a median pulse pressure < 20 mm Hg in the first 12 h of ECMO. Multivariable logistic regression was performed to investigate the association between pulse pressure and ABI.

Results

We analyzed 5138 blood pressure measurements from 123 (median age 63; 63% male) VA-ECMO patients (54% peripheral; 46% central cannulation), of whom 41 (33%) experienced ABI. Individual ABIs were as follows: ischemic stroke (n = 18, 15%), hypoxic ischemic brain injury (n = 14, 11%), seizure (n = 8, 7%), intracranial hemorrhage (n = 7, 6%), cerebral edema (n = 7, 6%), and brain death (n = 2, 2%). Fifty-eight (47%) patients had low pulse pressure. In a multivariable model adjusting for preselected covariates, including cannulation strategy (central vs. peripheral), lactate on ECMO day 1, and left ventricle venting strategy, low pulse pressure was independently associated with ABI (adjusted odds ratio 2.57, 95% confidence interval 1.05–6.24). In a model with the same covariates, every 10-mm Hg decrease in pulse pressure was associated with 31% increased odds of ABI (95% confidence interval 1.01–1.68). In a sensitivity analysis model adjusting for systolic pressure, pulse pressure remained significantly associated with ABI.

Conclusions

Early low pulse pressure (< 20 mm Hg) was associated with ABI in VA-ECMO patients. Low pulse pressure may serve as a marker of ABI risk, which necessitates close neuromonitoring for early detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Thiagarajan RR, Barbaro RP, Rycus PT, et al. Extracorporeal life support organization registry international report 2016. ASAIO J. 2017;63(1):60–7. https://doi.org/10.1097/MAT.0000000000000475.

    Article  PubMed  Google Scholar 

  2. Cho SM, Canner J, Chiarini G, et al. Modifiable risk factors and mortality from ischemic and hemorrhagic strokes in patients receiving venoarterial extracorporeal membrane oxygenation: Results from the extracorporeal life support organization registry. Crit Care Med. 2020;48(10):E897–905. https://doi.org/10.1097/CCM.0000000000004498.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Lorusso R, Barili F, Di MM, et al. In-hospital neurologic complications in adult patients undergoing venoarterial extracorporeal membrane oxygenation: results from the extracorporeal life support organization registry. Crit Care Med. 2016;44(10):e964–72. https://doi.org/10.1097/CCM.0000000000001865.

    Article  CAS  PubMed  Google Scholar 

  4. Cho SM, Ziai W, Mayasi Y, et al. Noninvasive neurological monitoring in extracorporeal membrane oxygenation. ASAIO J. 2020;66:388–93. https://doi.org/10.1097/MAT.0000000000001013.

    Article  PubMed  Google Scholar 

  5. Ong CS, Etchill E, Dong J, et al. Standardized noninvasive multimodal neuromonitoring, diagnosis of brain injury and neurological outcomes in patients on extracorporeal membrane oxygenation support (preprint). J Thorac Cardiovasc Surg. 2021.

  6. Al-Kawaz MN, Canner J, Caturegli G, et al. Duration of hyperoxia and neurologic outcomes in patients undergoing extracorporeal membrane oxygenation. Crit Care Med. 2021;49(10):e968–77. https://doi.org/10.1097/CCM.0000000000005069.

    Article  CAS  PubMed  Google Scholar 

  7. Shou BL, Ong CS, Zhou AL, et al. Arterial carbon dioxide tension and acute brain injury in venoarterial extracorporeal membrane oxygenation. ASAIO J. 2022. https://doi.org/10.1097/MAT.0000000000001699.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Al-Kawaz M, Shou B, Prokupets R, Whitman G, Geocadin R, Cho SM. Mild hypothermia and neurologic outcomes in patients undergoing venoarterial extracorporeal membrane oxygenation. J Card Surg. 2022;37(4):825–30. https://doi.org/10.1111/JOCS.16308.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Selvaraj S, Steg PG, Elbez Y, et al. Pulse pressure and risk for cardiovascular events in patients with atherothrombosis: from the REACH registry. J Am Coll Cardiol. 2016;67(4):392–403. https://doi.org/10.1016/J.JACC.2015.10.084.

    Article  PubMed  Google Scholar 

  10. Yildiran T, Koc M, Bozkurt A, Sahin DY, Unal I, Acarturk E. Low pulse pressure as a predictor of death in patients with mild to advanced heart failure. Texas Hear Inst J. 2010;37(3):284.

    Google Scholar 

  11. Vaccarino V, Berger AK, Abramson J, et al. Pulse pressure and risk of cardiovascular events in the systolic hypertension in the elderly program. Am J Cardiol. 2001;88(9):980–6. https://doi.org/10.1016/S0002-9149(01)01974-9.

    Article  CAS  PubMed  Google Scholar 

  12. Franklin SS. Pulse pressure as a risk factor. Clin Exp Hypertens. 2004;26(7–8):645–52. https://doi.org/10.1081/CEH-200031962.

    Article  PubMed  Google Scholar 

  13. Rilinger J, Riefler AM, Bemtgen X, et al. Impact of pulse pressure on clinical outcome in extracorporeal cardiopulmonary resuscitation (eCPR) patients. Clin Res Cardiol. 2021;110(9):1473–83. https://doi.org/10.1007/S00392-021-01838-7/TABLES/4.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Lee SI, Lim YS, Park CH, Choi WS, Choi CH. Importance of pulse pressure after extracorporeal cardiopulmonary resuscitation. J Card Surg. 2021;36(8):2743–50. https://doi.org/10.1111/jocs.15614.

    Article  PubMed  Google Scholar 

  15. O’Neil MP, Fleming JC, Badhwar A, Guo LR. Pulsatile versus nonpulsatile flow during cardiopulmonary bypass: microcirculatory and systemic effects. Ann Thorac Surg. 2012;94(6):2046–53. https://doi.org/10.1016/J.ATHORACSUR.2012.05.065.

    Article  PubMed  Google Scholar 

  16. Purohit SN, Cornwell WK, Pal JD, Lindenfeld JA, Ambardekar AV. Living without a pulse: the vascular implications of continuous-flow left ventricular assist devices. Circ Hear Fail. 2018;11(6):4670. https://doi.org/10.1161/CIRCHEARTFAILURE.117.004670.

    Article  Google Scholar 

  17. Inamori S, Shirai M, Yahagi N, et al. A comparative study of cerebral microcirculation during pulsatile and nonpulsatile selective cerebral perfusion: assessment by synchrotron radiation microangiography. ASAIO J. 2013;59(4):374–9. https://doi.org/10.1097/MAT.0B013E3182976939.

    Article  CAS  PubMed  Google Scholar 

  18. Zhao J, Yuan F, Fu F, et al. Blood pressure variability and outcome in acute severe stroke: a post hoc analysis of CHASE—a randomized controlled trial. J Clin Hypertens. 2021;23(1):96–102. https://doi.org/10.1111/JCH.14090.

    Article  Google Scholar 

  19. Berry M, Lairez O, Fourcade J, et al. Prognostic value of systolic short-term blood pressure variability in systolic heart failure. Clin Hypertens. 2016;22(1):1–6. https://doi.org/10.1186/S40885-016-0051-Z.

    Article  Google Scholar 

  20. Mistry EA, Mehta T, Mistry A, et al. Blood pressure variability and neurologic outcome after endovascular thrombectomy: a secondary analysis of the BEST study. Stroke. 2020;51:511–8. https://doi.org/10.1161/STROKEAHA.119.027549.

    Article  PubMed  Google Scholar 

  21. Kang J, Hong JH, Jang MU, et al. Change in blood pressure variability in patients with acute ischemic stroke and its effect on early neurologic outcome. PLOS ONE. 2017;12(12):e0189216. https://doi.org/10.1371/JOURNAL.PONE.0189216.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Manning LS, Rothwell PM, Potter JF, Robinson TG. Prognostic significance of short-term blood pressure variability in acute stroke: systematic review. Stroke. 2015;46(9):2482–90. https://doi.org/10.1161/STROKEAHA.115.010075.

    Article  PubMed  Google Scholar 

  23. Wilcox C, Etchill E, Giuliano K, et al. Acute brain injury in postcardiotomy shock treated with venoarterial extracorporeal membrane oxygenation. J Cardiothorac Vasc Anesth. 2021;35(7):1989–96. https://doi.org/10.1053/J.JVCA.2021.01.037.

    Article  PubMed  Google Scholar 

  24. Le Guennec L, Cholet C, Huang F, et al. Ischemic and hemorrhagic brain injury during venoarterial-extracorporeal membrane oxygenation. Ann Intensive Care. 2018;8(1):129. https://doi.org/10.1186/s13613-018-0475-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Vahdatpour C, Collins D, Goldberg S. Cardiogenic Shock. J Am Heart Assoc. 2019;8(8):11991. https://doi.org/10.1161/JAHA.119.011991.

    Article  Google Scholar 

  26. Vallabhajosyula S, O’Horo JC, Antharam P, et al. Concomitant intra-aortic balloon pump use in cardiogenic shock requiring veno-arterial extracorporeal membrane oxygenation: a systematic review and meta-analysis. Circ Cardiovasc Interv. 2018. https://doi.org/10.1161/CIRCINTERVENTIONS.118.006930.

    Article  PubMed  Google Scholar 

  27. Choi MS, Sung K, Cho YH. Clinical pearls of venoarterial extracorporeal membrane oxygenation for cardiogenic shock. Korean Circ J. 2019;49(8):657–77. https://doi.org/10.4070/KCJ.2019.0188.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Rao P, Khalpey Z, Smith R, Burkhoff D, Kociol RD. Venoarterial extracorporeal membrane oxygenation for cardiogenic shock and cardiac arrest. Circ Hear Fail. 2018;11(9):e004905. https://doi.org/10.1161/CIRCHEARTFAILURE.118.004905.

    Article  Google Scholar 

  29. O’Neil MP, Alie R, Guo LR, Myers ML, Murkin JM, Ellis CG. Microvascular responsiveness to pulsatile and nonpulsatile flow during cardiopulmonary bypass. Ann Thorac Surg. 2018;105(6):1745–53. https://doi.org/10.1016/J.ATHORACSUR.2018.01.007.

    Article  PubMed  Google Scholar 

  30. Tranmer BI, Gross CE, Kindt GW, Adey GR. Pulsatile versus nonpulsatile blood flow in the treatment of acute cerebral ischemia. Neurosurgery. 1986;19(5):724–31. https://doi.org/10.1227/00006123-198611000-00002.

    Article  CAS  PubMed  Google Scholar 

  31. Cheng A, Williamitis CA, Slaughter MS. Comparison of continuous-flow and pulsatile-flow left ventricular assist devices: Is there an advantage to pulsatility? Ann Cardiothorac Surg. 2014;3(6):57381–581. https://doi.org/10.3978/5143.

    Article  Google Scholar 

  32. Wilcox C, Choi CW, Cho S-M. Brain injury in extracorporeal cardiopulmonary resuscitation: translational to clinical research. J Neurocritical Care. 2021;14:63–77. https://doi.org/10.18700/JNC.210016.

    Article  Google Scholar 

  33. Crow S, John R, Boyle A, et al. Gastrointestinal bleeding rates in recipients of nonpulsatile and pulsatile left ventricular assist devices. J Thorac Cardiovasc Surg. 2009;137(1):208–15. https://doi.org/10.1016/J.JTCVS.2008.07.032.

    Article  CAS  PubMed  Google Scholar 

  34. Klovaite J, Gustafsson F, Mortensen SA, Sander K, Nielsen LB. Severely impaired von willebrand factor-dependent platelet aggregation in patients with a continuous-flow left ventricular assist device (HeartMate II). J Am Coll Cardiol. 2009;53(23):2162–7. https://doi.org/10.1016/J.JACC.2009.02.048.

    Article  CAS  PubMed  Google Scholar 

  35. Diehl A, Burrell AJC, Udy AA, et al. Association between arterial carbon dioxide tension and clinical outcomes in venoarterial extracorporeal membrane oxygenation. Crit Care Med. 2020;5:977–84. https://doi.org/10.1097/CCM.0000000000004347.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Hopkins Education, Research, and Advancement in Life support Devices (HERALD) Investigators are as follows: Kate Calligy, Patricia Brown, Diane Alejo, Scott Anderson, Matthew Acton, Hannah Rando, Henry Chang, and Hannah Kerr.

Funding

BLS was supported by an Alpha Omega Alpha Carolyn L. Kuckein Fellowship at the time of this study. SPK is supported by the National Heart, Lung, and Blood Institute (5K08HL14332). SMC is supported by the National Heart, Lung, and Blood Institute (1K23HL157610).

Author information

Authors and Affiliations

Authors

Consortia

Contributions

Data collection: BLS, GC, LQZ, SMC. Analysis: BLS. Writing (initial draft): BLS, CW, IF, AK. Writing (final draft): all authors. Supervision: EB, BSK, SPK, GJRW, SMC.

Corresponding author

Correspondence to Benjamin L. Shou.

Ethics declarations

Conflicts of interest

The authors do not have any conflicts of interest to declare.

Ethical approval/informed consent

This study was approved by the Johns Hopkins Hospital Institutional Review Board (IRB00216321) on October 22, 2019.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 940 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shou, B.L., Wilcox, C., Florissi, I. et al. Early Low Pulse Pressure in VA-ECMO Is Associated with Acute Brain Injury. Neurocrit Care 38, 612–621 (2023). https://doi.org/10.1007/s12028-022-01607-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12028-022-01607-y

Keywords

Navigation