Skip to main content

Advertisement

Log in

Neuromonitoring in Severe Traumatic Brain Injury: A Bibliometric Analysis

  • Review Article
  • Published:
Neurocritical Care Aims and scope Submit manuscript

Abstract

Traumatic brain injury (TBI) is the leading cause of mortality and disability among trauma-related injuries. Neuromonitoring plays an essential role in the management and prognosis of patients with severe TBI. Our bibliometric study aimed to identify the knowledge base, define the research front, and outline the social networks on neuromonitoring in severe TBI. We conducted an electronic search for articles related to neuromonitoring in severe TBI in Scopus. A descriptive analysis retrieved evidence on the most productive authors and countries, the most cited articles, the most frequently publishing journals, and the most common author’s keywords. Through a three-step network extraction process, we performed a collaboration analysis among universities and countries, a cocitation analysis, and a word cooccurrence analysis. A total of 1884 records formed the basis of our bibliometric study. We recorded an increasing scientific interest in the use of neuromonitoring in severe TBI. Czosnyka, Hutchinson, Menon, Smielewski, and Stocchetti were the most productive authors. The most cited document was a review study by Maas et al. There was an extensive collaboration among universities. The most common keywords were “intracranial pressure,” with an increasing interest in magnetic resonance imaging and cerebral perfusion pressure monitoring. Neuromonitoring constitutes an area of active research. The present findings indicate that intracranial pressure monitoring plays a pivotal role in the management of severe TBI. Scientific interest shifts to magnetic resonance imaging and individualized patient care on the basis of optimal cerebral perfusion pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Charry J, Rubiano A, Nikas C, et al. Results of early cranial decompression as an initial approach for damage control therapy in severe traumatic brain injury in a hospital with limited resources. J Neurosci Rural Pract. 2016;7(01):7–12.

    Article  Google Scholar 

  2. Selassie A, Zaloshnja E, Langlois J, Miller T, Jones P, Steiner C. Incidence of long-term disability following traumatic brain injury hospitalization, United States, 2003. J Head Trauma Rehabil. 2008;23(2):123–31.

    Article  Google Scholar 

  3. Teasdale G, Maas A, Lecky F, Manley G, Stocchetti N, Murray G. The Glasgow coma scale at 40 years: standing the test of time. Lancet Neurol. 2014;13(8):844–54.

    Article  Google Scholar 

  4. Stocchetti N, Carbonara M, Citerio G, et al. Severe traumatic brain injury: targeted management in the intensive care unit. Lancet Neurol. 2017;16(6):452–64.

    Article  Google Scholar 

  5. Makarenko S, Griesdale D, Gooderham P, Sekhon M. Multimodal neuromonitoring for traumatic brain injury: a shift towards individualized therapy. J Clin Neurosci. 2016;26:8–13.

    Article  Google Scholar 

  6. Kirkman M, Smith M. Multimodality neuromonitoring. Anesthesiol Clin. 2016;34(3):511–23.

    Article  Google Scholar 

  7. Smith M. Multimodality neuromonitoring in adult traumatic brain injury. Anesthesiology. 2018;128(2):401–15.

    Article  Google Scholar 

  8. Citerio G, Oddo M, Taccone F. Recommendations for the use of multimodal monitoring in the neurointensive care unit. Curr Opin Crit Care. 2015;21(2):113–9.

    Article  Google Scholar 

  9. Le Roux P, Menon D, Citerio G, et al. Consensus summary statement of the international multidisciplinary consensus conference on multimodality monitoring in neurocritical care. Intensive Care Med. 2014;40(9):1189–209.

    Article  Google Scholar 

  10. Stocchetti N, Picetti E, Berardino M, et al. Clinical applications of intracranial pressure monitoring in traumatic brain injury. Acta Neurochir. 2014;156(8):1615–22.

    Article  Google Scholar 

  11. Aria M, Cuccurullo C. bibliometrix: an R-tool for comprehensive science mapping analysis. J Informetr. 2017;11(4):959–75.

    Article  Google Scholar 

  12. Maas A, Stocchetti N, Bullock R. Moderate and severe traumatic brain injury in adults. Lancet Neurol. 2008;7(8):728–41.

    Article  Google Scholar 

  13. Rosner M, Rosner S, Johnson A. Cerebral perfusion pressure: management protocol and clinical results. J Neurosurg. 1995;83(6):949–62.

    Article  CAS  Google Scholar 

  14. Chesnut R, Temkin N, Carney N, et al. A trial of intracranial-pressure monitoring in traumatic brain injury. N Engl J Med. 2012;367(26):2471–81.

    Article  CAS  Google Scholar 

  15. Robertson C, Valadka A, Hannay H, et al. Prevention of secondary ischemic insults after severe head injury. Crit Care Med. 1999;27(10):2086–95.

    Article  CAS  Google Scholar 

  16. Steiner L, Czosnyka M, Piechnik S, et al. Continuous monitoring of cerebrovascular pressure reactivity allows determination of optimal cerebral perfusion pressure in patients with traumatic brain injury. Crit Care Med. 2002;30(4):733–8.

    Article  Google Scholar 

  17. Nafade V, Nash M, Huddart S, et al. A bibliometric analysis of tuberculosis research, 2007–2016. PLoS ONE. 2018;13(6):e0199706.

    Article  Google Scholar 

  18. Syrimi E, Lewison G, Sullivan R, Kearns P. Analysis of global pediatric cancer research and publications. JCO Glob Oncol. 2020;6:9–18.

    Article  Google Scholar 

  19. Yang C, Wang X, Tang X, Bao X, Wang R. Research trends of stem cells in ischemic stroke from 1999 to 2018: a bibliometric analysis. Clin Neurol Neurosurg. 2020;192:105740.

    Article  Google Scholar 

  20. Hyder A, Wunderlich C, Puvanachandra P, Gururaj G, Kobusingye O. The impact of traumatic brain injuries: a global perspective. NeuroRehabilitation. 2007;22(5):341–53.

    Article  Google Scholar 

  21. Dewan M, Rattani A, Gupta S, et al. Estimating the global incidence of traumatic brain injury. J Neurosurg. 2019;130(4):1080–97.

    Article  Google Scholar 

  22. Barone D, Czosnyka M. Brain monitoring: do we need a hole? An update on invasive and noninvasive brain monitoring modalities. ScientificWorldJournal. 2014;2014:1–6.

    Article  Google Scholar 

  23. Weerakkody R, Czosnyka M, Zweifel C, et al. Near infrared spectroscopy as possible non-invasive monitor of slow vasogenic ICP waves. Acta Neurochir Suppl. 2012;181–5.

  24. Cardim D, Robba C, Bohdanowicz M, et al. Non-invasive monitoring of intracranial pressure using transcranial doppler ultrasonography: is it possible? Neurocrit Care. 2016;25(3):473–91.

    Article  Google Scholar 

  25. Nag D, Sahu S, Swain A, Kant S. Intracranial pressure monitoring: gold standard and recent innovations. World J Clin Cases. 2019;7(13):1535–53.

    Article  Google Scholar 

  26. Isa R, Adnan W, Ghazali G, et al. Outcome of severe traumatic brain injury: comparison of three monitoring approaches. Neurosurg Focus. 2003;15(6):1–7.

    Article  Google Scholar 

  27. Meixensberger J. Brain tissue oxygen guided treatment supplementing ICP/CPP therapy after traumatic brain injury. J Neurol Neurosurg Psychiatsry. 2003;74(6):760–4.

    Article  CAS  Google Scholar 

  28. Lauritzen M, Dreier JP, Fabricius M, Hartings JA, Graf R, Strong AJ. Clinical relevance of cortical spreading depression in neurological disorders: migraine, malignant stroke, subarachnoid and intracranial hemorrhage, and traumatic brain injury. J Cereb Blood Flow Metab. 2011;31(1):17–35. https://doi.org/10.1038/jcbfm.2010.191.

    Article  Google Scholar 

  29. Aarabi B, Hesdorffer DC, Ahn ES, Aresco C, Scalea TM, Eisenberg HM. Outcome following decompressive craniectomy for malignant swelling due to severe head injury. J Neurosurg. 2006;104(4):469–79. https://doi.org/10.3171/jns.2006.104.4.469.

    Article  PubMed  Google Scholar 

  30. Kang SK, Murphy RK, Hwang SW, Lee SM, Harburg DV, Krueger NA, Shin J, Gamble P, Cheng H, Yu S, Liu Z, McCall JG, Stephen M, Ying H, Kim J, Park G, Webb RC, Lee CH, Chung S, Wie DS, Gujar AD, Vemulapalli B, Kim AH, Lee KM, Cheng J, Huang Y, Lee SH, Braun PV, Ray WZ, Rogers JA. Bioresorbable silicon electronic sensors for the brain. Nature. 2016;530(7588):71–6. https://doi.org/10.1038/nature16492.

    Article  CAS  PubMed  Google Scholar 

  31. Rovlias A, Kotsou S. The influence of hyperglycemia on neurological outcome in patients with severe head injury. Neurosurgery. 2000;46(2):335–42. https://doi.org/10.1097/00006123-200002000-00015.

    Article  CAS  PubMed  Google Scholar 

  32. Polderman KH. Application of therapeutic hypothermia in the intensive care unit. Intensive Care Med. 2004;30(5):757–69. https://doi.org/10.1007/s00134-003-2151-y.

    Article  PubMed  Google Scholar 

  33. Manley G. Hypotension, hypoxia, and head injury: frequency, duration, and consequences. Arch Surg. 2001;136(10):1118. https://doi.org/10.1007/s00134-003-2151-y.

    Article  CAS  PubMed  Google Scholar 

  34. Stiefel MF, Spiotta A, Gracias VH, Garuffe AM, Guillamondegui O, Maloney-Wilensky E, Bloom S, Grady MS, LeRoux PD. Reduced mortality rate in patients with severe traumatic brain injury treated with brain tissue oxygen monitoring. J Neurosurg. 2005;103(5):805–11. https://doi.org/10.3171/jns.2005.103.5.0805.

    Article  PubMed  Google Scholar 

  35. Vespa PM, Miller C, McArthur D, Eliseo M, Etchepare M, Hirt D, Glenn TC, Martin N, Hovda D. Nonconvulsive electrographic seizures after traumatic brain injury result in a delayed, prolonged increase in intracranial pressure and metabolic crisis. Crit Care Med. 2007;35(12):2830–6. https://doi.org/10.1097/00003246-200712000-00023.

    Article  PubMed  Google Scholar 

  36. Aries MJ, Czosnyka M, Budohoski KP, Steiner LA, Lavinio A, Kolias AG, Hutchinson PJ, Brady KM, Menon DK, Pickard JD, Smielewski P. Continuous determination of optimal cerebral perfusion pressure in traumatic brain injury. Crit Care Med. 2012;40(8):2456–63. https://doi.org/10.1097/CCM.0b013e3182514eb6.

    Article  PubMed  Google Scholar 

  37. Bulger EM, Nathens AB, Rivara FP, Moore M, MacKenzie EJ, Jurkovich GJ. Management of severe head injury: institutional variations in care and effect on outcome. Crit Care Med. 2002;30(8):1870–6. https://doi.org/10.1097/00003246-200208000-00033.

    Article  PubMed  Google Scholar 

  38. Geeraerts T, Launey Y, Martin L, Pottecher J, Vigué B, Duranteau J, Benhamou D. Ultrasonography of the optic nerve sheath may be useful for detecting raised intracranial pressure after severe brain injury. Intensive Care Med. 2007;33(10):1704–11. https://doi.org/10.1007/s00134-007-0797-6.

    Article  PubMed  Google Scholar 

  39. Holloway KL, Barnes T, Choi S, Bullock R, Marshall LF, Eisenberg HM, Jane JA, Ward JD, Young HF, Marmarou A. Ventriculostomy infections: the effect of monitoring duration and catheter exchange in 584 patients. J Neurosurg. 1996;85(3):419–24. https://doi.org/10.3171/jns.1996.85.3.0419.

    Article  CAS  PubMed  Google Scholar 

  40. Rosenfeld JV, Maas AI, Bragge P, Morganti-Kossmann MC, Manley GT, Gruen RL. Early management of severe traumatic brain injury. Lancet. 2012;380(9847):1088–98. https://doi.org/10.1016/S0140-6736(12)60864-2.

    Article  Google Scholar 

  41. Timofeev I, Carpenter KL, Nortje J, Al-Rawi PG, O’Connell MT, Czosnyka M, Smielewski P, Pickard JD, Menon DK, Kirkpatrick PJ, Gupta AK, Hutchinson PJ. Cerebral extracellular chemistry and outcome following traumatic brain injury: a microdialysis study of 223 patients. Brain. 2011;134(2):484–94. https://doi.org/10.1093/brain/awq353.

    Article  PubMed  Google Scholar 

  42. Bouma G, Muizelaar J, Bandoh K, Marmarou A. Blood pressure and intracranial pressure-volume dynamics in severe head injury: relationship with cerebral blood flow. J Neurosurg. 1992;77(1):15–9. https://doi.org/10.3171/jns.1992.77.1.0015.

    Article  CAS  PubMed  Google Scholar 

  43. Le Roux P, Menon DK, Citerio G, Vespa P, Bader MK, Brophy GM, Diringer MN, Stocchetti N, Videtta W, Armonda R, Badjatia N, Böesel J, Chesnut R, Chou S, Claassen J, Czosnyka M, De Georgia M, Figaji A, Fugate J, Helbok R, Horowitz D, Hutchinson P, Kumar M, McNett M, Miller C, Naidech A, Oddo M, Olson D, O'Phelan K, Provencio JJ, Puppo C, Riker R, Robertson C, Schmidt M, Taccone F. Consensus summary statement of the international multidisciplinary consensus conference on multimodality monitoring in neurocritical care. Neurocrit Care. 2014;21(S2):1–26. https://doi.org/10.1007/s12028-014-0041-5

    Article  Google Scholar 

  44. Carney N, Totten AM, O’Reilly C, et al. Guidelines for the Management of Severe Traumatic Brain Injury, 4th Edition. Brain Trauma Foundation. 2016. https://braintrauma.org/uploads/03/12/Guidelines_for_Management_of_Severe_TBI_4th_Edition.pdf.

Download references

Funding

No funding was received for our study.

Author information

Authors and Affiliations

Authors

Contributions

MK: conceptualization, investigation, writing original draft, methodology, writing review, and editing. AB: conceptualization, investigation; writing original draft, methodology, formal analysis, visualization, writing review, and editing. CG: conceptualization, validation, writing review, and editing. TK: writing review and editing. CV: writing review and editing. GS: writing review and editing. KF: conceptualization, writing review, editing, project administration, and supervision. All contributing authors have approved the final manuscript.

Corresponding author

Correspondence to Maria D. Karagianni.

Ethics declarations

Conflicts of Interest

I would like to declare that no conflict of interest, financial or any ethical issue resulting from the publication of this manuscript exists.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Figure 1. The figure shows the scientific production of the most influential authors over time. (PNG 564 kb)

12028_2021_1428_MOESM2_ESM.tiff

Figure 2. Three larger and three smaller groups were recognized in the co-word analysis network, according to the author’s keyword co-occurrence. (TIFF 2990 kb)

Figure 3. Two main concepts were identified according to the conceptual structure map. (PNG 96 kb)

12028_2021_1428_MOESM4_ESM.png

Figure 4. A schematic representation of the significant international collaborations between institutions (top figure) and between countries (bottom figure) regarding the usage of neuromonitoring in sTBI patients. (PNG 862 kb)

12028_2021_1428_MOESM5_ESM.png

Figure 5. A schematic representation demonstrating a dense co-work analysis network according to the author’s co-citation analysis. (PNG 868 kb)

Supplementary file1 (DOCX 15 kb)

Supplementary file2 (DOCX 15 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karagianni, M.D., Brotis, A.G., Gatos, C. et al. Neuromonitoring in Severe Traumatic Brain Injury: A Bibliometric Analysis. Neurocrit Care 36, 1044–1052 (2022). https://doi.org/10.1007/s12028-021-01428-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12028-021-01428-5

Keywords

Navigation