Skip to main content

Advertisement

Log in

Acute Kidney Injury at the Neurocritical Care Unit

  • Review Article
  • Published:
Neurocritical Care Aims and scope Submit manuscript

Abstract

Neurocritical care has advanced substantially in recent decades, allowing doctors to treat patients with more complicated conditions who require a multidisciplinary approach to achieve better clinical outcomes. In neurocritical patients, nonneurological complications such as acute kidney injury (AKI) are independent predictors of worse clinical outcomes. Different research groups have reported an AKI incidence of 11.6% and an incidence of stage 3 AKI, according to the Kidney Disease: Improving Global Outcomes, that requires dialysis of 3% to 12% in neurocritical patients. These patients tend to be younger, have less comorbidity, and have a different risk profile, given the diagnostic and therapeutic procedures they undergo. Trauma-induced AKI, sepsis, sympathetic overstimulation, tubular epitheliopathy, hyperchloremia, use of nephrotoxic drugs, and renal hypoperfusion are some of the causes of AKI in neurocritical patients. AKI is the result of a sum of events, although the mechanisms underlying many of them remain uncertain; however, two important causes that merit mention are direct alteration of the physiological brain–kidney connection and exposure to injury as a result of the specific medical management and well-established therapies that neurocritical patients are subjected to. This review will focus on AKI in neurocritical care patients. Specifically, it will discuss its epidemiology, causes, associated mechanisms, and relationship to the brain–kidney axis. Additionally, the use and risks of extracorporeal therapies in this group of patients will be reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Van der Schaaf I, Algra A, Wemer M, et al. Endovascular coiling versus neurosurgical clipping for patients with aneurysmal subarachnoid haemorrhage. Cochrane Database Syst Rev. 2005;19(4):CD003085.

    Google Scholar 

  2. Chertow GM, Burdick E, Honour M, et al. Acute kidney injury, mortality, length of stay, and costs in hospitalized patients. J Am Soc Nephrol. 2005;16:3365–70.

    Article  PubMed  Google Scholar 

  3. Uchino S, Kellum JA, Bellomo R, et al. Acute renal failure in critically ill patients: a multinational, multicenter study. JAMA. 2005;294:813–8.

    Article  CAS  Google Scholar 

  4. Chertow GM, Christiansen CL, Cleary PD, et al. Prognostic stratification in critically ill patients with acute renal failure requiring dialysis. Arch Intern Med. 1995;155:1505–11.

    Article  CAS  PubMed  Google Scholar 

  5. Gruber A, Reinprecht A, Illievich UM, et al. Extracerebral organ dysfunction and neurologic outcome after aneurysmal subarachnoid hemorrhage. Crit Care Med. 1999;27:505–14.

    Article  CAS  PubMed  Google Scholar 

  6. Zygun D. Non-neurological organ dysfunction in neurocritical care: impact on outcome and etiological considerations. Curr Opin Crit Care. 2005;11(2):139–43.

    Article  PubMed  Google Scholar 

  7. Tsagalis G. Renal dysfunction in acute stroke: an independent predictor of long-term all combined vascular events and overall mortality. Nephrol Dial Transplant. 2009;24(1):194–200.

    Article  PubMed  Google Scholar 

  8. Corral L. Impact of non-neurological complications in severe traumatic brain injury outcome. Crit Care. 2012;16(2):R44.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Zacharia BE. Renal dysfunction as an independent predictor of outcome after aneurysmal subarachnoid hemorrhage: a single-center cohort study. Stroke. 2009;40(7):2375–81.

    Article  PubMed  Google Scholar 

  10. Moore EM, Bellomo R, Nichol A, Harley N, Macisaac C, Cooper DJ. The incidence of acute kidney injury in patients with traumatic brain injury. Ren Fail. 2010;32(9):1060–5.

    Article  PubMed  Google Scholar 

  11. Covic A, Schiller A, Mardare NG, et al. The impact of acute kidney injury on short-term survival in an Eastern European population with stroke. Nephrol Dial Transplant. 2008;23(7):2228–34.

    Article  PubMed  Google Scholar 

  12. Buttner S, Stadler A, Mayer C, et al. Incidence, risk factors, and outcome of acute kidney injury in neurocritical care. J Intensive Care Med. 2020;35(4):338–46.

    Article  PubMed  Google Scholar 

  13. Zorrilla-Vaca A, Ziai W, Sander E, Geocadin R, Thompson R, Rivera-lara L. Acute kidney injury following acute ischemic stroke and intracerebral hemorrhage: A meta-analysis of prevalence rate and mortality risk. Cerebrovasc Dic. 2017;45:1–9.

    Google Scholar 

  14. Tujjar O, Belloni I, Hougardy JM, et al. Acute kidney injury after subarachnoid hemorrhage. J Neurosurg Anesthesiol. 2017;29(2):140–9.

    Article  PubMed  Google Scholar 

  15. Wang D, Guo Y, Zhang Y, Li Z, Li A, Luo Y. Epidemiology of acute kidney injury in patients with stroke: a retrospective analysis from the neurology ICU. Intern Emerg Med. 2018;13(1):17–25.

    Article  CAS  PubMed  Google Scholar 

  16. Li N, Zhao WG, Zhang WF. Acute kidney injury in patients with severe traumatic brain injury: implementation of the acute kidney injury network stage system. Neurocrit Care. 2011;14:377–81.

    Article  PubMed  Google Scholar 

  17. Saeed F, Adil MM, Khursheed F, et al. Acute renal failure is associated with higher death and disability in patients with acute ischemic stroke: analysis of nationwide inpatient sample. Stroke. 2014;45:1478–80.

    Article  CAS  PubMed  Google Scholar 

  18. Kidney Disease: Improving Global Outcomes (KDIGO) Acute kidney Injury Work Group. KDIGO Clinical Practice Guideline for Acute Kidney Injury. Kidney Int Suppl. 2012;2:1–138

  19. Nadkarni G, Patel A, Konstantinidis I, et al. Dialysis requiring acute kidney injury in acute cerebrovascular accident hospitalizations. Stroke. 2015;46(11):3226–31.

    Article  PubMed  Google Scholar 

  20. Shigehiko U, Chapter 6 – Kidney-Specific Severity Score, Editor(s): Claudio Ronco, Rinaldo Bellomo, John A. Kellum, Zaccaria Ricci, Critical Care Nephrology (Third Edition), Elsevier, 2019, 29–34. E1. ISBN 9780323449427.

  21. An S, Luo H, Wang J, et al. An acute kidney injury prediction nomogram based on neurosurgical intensive care unit profiles. Ann Transl Med. 2020;8(5):194.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhao Q, Yan T, Chopp M, Venkat P, Chen J. Brain-kidney interaction: Renal dysfunction following ischemic stroke. J Cereb Blood Flow Metab. 2020;40(2):246–62.

    Article  CAS  PubMed  Google Scholar 

  23. Palkovits M, Sebekova K, Gallatz K, et al. Neuronal activation in the CNS during different forms of acute renal failure in rats. Neuroscience. 2009;159:862–82.

    Article  CAS  PubMed  Google Scholar 

  24. DiBona GF. Physiology in perspective: the Wisdom of the Body. Neural control of the kidney. Am J Physiol Regul Integr Comp Physiol. 2005;289:R633–41.

    Article  CAS  PubMed  Google Scholar 

  25. Liu M, Liang Y, Chigurupati S, et al. Acute kidney injury leads to inflammation and functional changes in the brain. J Am Soc Nephrol. 2008;19(7):1360–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Andres-Hernando A, Dursun B, Altmann C, et al. Cytokine production increases and cytokine clearance decreases in mice with bilateral nepherectomy. Nephrol Dial Transpl. 2012;27:4339–47.

    Article  CAS  Google Scholar 

  27. Nongunch A, Panorchan K, Davenport A. Brain-kidney crosstalk. Crit Care. 2014;18:225.

    Article  Google Scholar 

  28. Lu R, Kiernan MC, Murray A, Rosner MH, Ronco C. Kidney-brain crosstalk in the acute and chronic setting. Nat Rev Nephrol. 2015;11(12):707–19.

    Article  CAS  PubMed  Google Scholar 

  29. Tsao N, Hsu HP, Wu CM, Liu CC, Lei HY. Tumor necrosis factor-alpha causes an increase in blood-brain barrier permeability during sepsis. J Med Microbiol. 2001;50:812–21.

    Article  CAS  PubMed  Google Scholar 

  30. Wiggins-Dohlvik K, Merriman M, Shaji CA, et al. Tumor necrosis factor-alpha disruption of brain endothelial cell barrier is mediated through matrix metalloproteinase-9. Am J Surg. 2014;208:954–60.

    Article  PubMed  Google Scholar 

  31. Trinh-Trang-Tan MM, Cartron JP, Bankir L. Molecular basis for the dialysis disequilibrium syndrome: altered aquaporin and urea transporter expression in the brain. Nephrol Dial. 2005;20:1984–8.

    Article  CAS  Google Scholar 

  32. de Vries DK, Lindeman JH, Ringers J, et al. Donor brain death predisposes human kidney grafts to a proinflammatory reaction after transplantation. Am J Transplant. 2011;11:1064–70.

    Article  PubMed  Google Scholar 

  33. O’Kane RL, Vina JR, Simpson I, Zaragoza R, Mokashi A, Hawkins RA. Cationic amino acid transport across the blood-brain barrier is mediated exclusively by system y+. Am J Physiol Endocrinol Metab. 2006;291:412–9.

    Article  Google Scholar 

  34. Zaganas I, Pajecka K, Wender C, Schousboe A, Waagepetersen HS, Plaitakis A. The effect of pH and ADP on ammonia affinity for human glutamate dehydrogenases. Metab Brain Dis. 2013;28(2):127–31.

    Article  CAS  PubMed  Google Scholar 

  35. Rothman D, De Feyter HM, Maciejewski PK, Behar KL. Is there in vivo evidence for amino acid shuttles carrying ammonia from neurons to astrocytes? Neurochem Res. 2012;37(11):2597–612.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lassen NA. Autoregulation of cerebral blood flow. Circ Res. 1964;15(suppl):201–4.

    CAS  Google Scholar 

  37. Just A. Mechanisms of renal blood flow autoregulation: dynamics and contributions. Am J Physiol Regul Integr Comp Physiol. 2007;292:R1-17.

    Article  CAS  PubMed  Google Scholar 

  38. Davenport A. The brain and the kidney-organ cross talk and interactions. Blood Purif. 2008;26:526–36.

    Article  PubMed  Google Scholar 

  39. Dias C, Gaio R, Monteiro E, et al. Kidney-Brain link in traumatic brain injury patients? A preliminary report Neurocrit Care. 2015;22(2):192–201.

    Article  PubMed  Google Scholar 

  40. Udy A, Boots R, Senthuran S, et al. Augmented creatinine clearance in traumatic brain injury. Anesth Analg. 2010;111:1505–10.

    Article  CAS  PubMed  Google Scholar 

  41. Minville V, Asehnoune K, Ruiz S, et al. Increased creatinine clearance in polytrauma patients with normal serum creatinine: a retrospective observational study. Crit Care. 2011;15:R49.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Spencer DD, Jacobi J, Juenke JM, Fleck JD, Kays MB. Steady-state pharmacokinetics of intravenous levetiracetam in neurocritical care patients. Pharmacotherapy. 2011;31:934–41.

    Article  CAS  PubMed  Google Scholar 

  43. Drust A, Luchtmann M, Firsching R, Tröger U, Martens-Lobenhoffer J, Bode-Böger SM. Recurrent seizures in a levetiracetam-treated patient after subarachnoid hemorrhage: a matter of enhanced renal function? Epilepsy Behav. 2012;23(3):394–5.

    Article  PubMed  Google Scholar 

  44. Wan L, Bellomo R, May CN. A comparison of 4% succinylated gelatin solution versus normal saline in stable normovolaemic sheep: global haemodynamic, regional blood flow and oxygen delivery effects. Anaesth Intensive Care. 2007;35:924–31.

    Article  CAS  PubMed  Google Scholar 

  45. Di Giantomasso D, May CN, Bellomo R. Norepinephrine and vital organs blood flow during experimental hyperdynamic sepsis. Intensive Care Med. 2003;29:1774–81.

    Article  PubMed  Google Scholar 

  46. Lenz A, Franklin GA, Cheadle WG. Systemic inflammation after trauma. Injury. 2007;38:1336–45.

    Article  PubMed  Google Scholar 

  47. Ott L, McClain CJ, Gillespie M, Young B. Cytokines and metabolic dysfunction after severe head injury. J Neurotrauma. 1994;11:447–72.

    Article  CAS  PubMed  Google Scholar 

  48. Udy AA, Jarrett P, Lassig Smith M, Suart J, Starr T, Dunlop R, et al. Augmented renal clearance in traumatic brain injury: a single-center observational study of atrial natriuretic peptide, cardiac output, and creatinine clearance. J Neurotrauma. 2017;34:137–44.

    Article  PubMed  Google Scholar 

  49. Civiletti F, Assenzio B, Mazzeo AT, et al. Acute tubular Injury is Associated With severe traumatic Brain Injury: in Vitro study on Human tubular epithelial Cells. Sci Rep. 2019;9(1):6090.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Messerer DAC, Halbgebauer R, Nilsson B, Pavenstädt H, Radermacher P, Huber-Lang M. Immunopathophysiology of trauma-related acute kidney injury. Nat Rev Nephrol. 2021;17(2):91–111.

    Article  CAS  PubMed  Google Scholar 

  51. Khalid F, Yang GL, McGuire JL, et al. Autonomic dysfunction following traumatic brain injury: translational insights. Neurosurg Focus. 2019;47(5):E8.

    Article  PubMed  Google Scholar 

  52. Kumar AB, Shi Y, Shotwell MS, Richards J, Ehrenfeld JM. Hypernatremia is a significant risk factor for acute kidney injury after subarachnoid hemorrhage: a retrospective analysis. Neurocrit Care. 2015;22(2):184–91.

    Article  PubMed  Google Scholar 

  53. Sadan O, Singbartl K, Kraft J, et al. Low-chloride-versus high-chloride-containing hypertonic solution for the treatment of subarachnoid hemorrhage-related complications: The ACETatE (A low ChloriE hyperTonic solution for brain Edema) randomized trial. J Intensive Care. 2020;4(8):32.

    Article  Google Scholar 

  54. Sadan O, Singbartl K, Kandiah PA, Martin KS, Samuels OB. Hyperchloremia is associated with acute kidney injury in patients with subarachnoid hemorrhage. Crit Care Med. 2017;45(8):1382–8.

    Article  CAS  PubMed  Google Scholar 

  55. Lee HG, Kim WK, Yeon JY. Contrast-Induced Acute Kidney Injury after Coil Embolization for Aneurysmal Subarachnoid Hemorrhage. Yonsei Med J. 2018;59(1):107–12.

    Article  PubMed  Google Scholar 

  56. Hemphill JC 3rd, Greenberg SM, Anderson CS, et al.; American Heart Association Stroke Council; Council on Cardiovascular and Stroke Nursing; Council on Clinical Cardiology. Guidelines for the management of spontaneous intracerebral hemorrhage: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 2015;46:2032–60.

  57. Qureshi AI, Palesch YY, Martin R, et al; Antihypertensive Treatment of Acute Cerebral Hemorrhage Investigators. Systolic blood pressure reduction and risk of acute renal injury in patients with intracerebral hemorrhage. Am J Med 2012;125(7):718.e1–6.

  58. Diprose WK, Sutherland LJ, Wang MTM, Barber PA. Contrast-associated acute kidney injury in endovascular thrombectomy patients with and without baseline renal impairment. Stroke. 2019;50(12):3527–31.

    Article  PubMed  Google Scholar 

  59. Kim MY, Park JH, Kang NR, et al. Increased risk of acute kidney injury associated with higher infusion rate of mannitol in patients with intracranial hemorrhage. J Neurosurg. 2014;120(6):1340–8.

    Article  PubMed  Google Scholar 

  60. Ghahramani N, Shadrou S, Hollenbeak C. A systematic review of continuous renal replacement therapy and intermittent haemodialysis in management of patients with acute renal failure. Nephrology. 2008;13:570–8.

    Article  PubMed  Google Scholar 

  61. Patel P, Nandwani V, McCarthy P, Conrad S, Scott LK. Continuous renal replacement therapies: A brief primer for the neurointensivist. Neurocrit Care. 2010;13:286–94.

    Article  PubMed  Google Scholar 

  62. Osgood M, Compton R, Carandang R, Hall W, Kershaw G, Muehlschlegel S. Rapid unexpected brain herniation in association with renal replacement therapy in acute brain injury: caution in the neurocritical care unit. Neurocrit Care. 2015;22:176–83.

    Article  PubMed  Google Scholar 

  63. Donnelly J, Budohoski KP, Smielewski P, Czosnyka M. Regulation of the cerebral circulation: bedside assessment and clinical implications. Crit Care. 2016;20(1):129.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Davenport A, Will EJ, Davidson AM. Improved cardiovascular stability during continuous modes of renal replacement therapy in critically ill patients with acute hepatic and renal failure. Crit Care Med. 1993;21(2):328–38.

    Article  CAS  PubMed  Google Scholar 

  65. Ronco C, Bellomo R, Brendolan A, Pinna V, La Greca G. Brain density changes during renal replacement in critically ill patients with acute renal failure. Continuous hemofiltration versus intermittent hemodialysis. J Nephrol. 1999;12(3):173–8.

    CAS  PubMed  Google Scholar 

  66. Hata R, Matsumoto M, Handa N, Terakawa H, Sugitani Y, Kamada T. Effects of hemodialysis on cerebral circulation evaluated by transcranial Doppler ultrasonography. Stroke. 1994;25:408–12.

    Article  CAS  PubMed  Google Scholar 

  67. Ko S, Choi HA, Gilmore E, Schmidt JM, Claassen J, Lee K. Pearls & Oy-ster: The effects of renal replacement therapy on cerebral autoregulation. Neurology. 2012;78(6):e36–8.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Uchino S, Bellomo R, Kellum JA. Patients and kidney survival by dialysis modality in critically ill patients with acute kidney injury. Int J Artif Organs. 2007;30(4):281–92.

    Article  CAS  PubMed  Google Scholar 

  69. Bucci MN, Dechert RE, Arnoldi DK, Campbell J, McGillicyddu JE, Bartlett RH. Elevated intracranial pressure associated with hypermetabolism in isolated head trauma. Acta Neurochir (Wien). 1988;93(3–4):133–6.

    Article  CAS  Google Scholar 

  70. Kennedy AC, Linton AL, Luke RG, Renfrew S, Dinwoodie A. The pathogenesis and prevention of cerebral dysfunction during dialysis. Lancet. 1964;1(7337):790–3.

    Article  CAS  PubMed  Google Scholar 

  71. Bertrand YM, Hermant A, Mahieu P, Roeb J. Intracranial pressure changes in patients with head trauma during hemodialysis. Intensive Care Med. 1983;9:321–3.

    Article  CAS  PubMed  Google Scholar 

  72. Chen CL, Lai PH, Chou KJ, Lee PT, Chung HM, Fang HC. A preliminary report of brain edema in patients with uremia at first hemodialysis: evaluation by diffusion-weighted MR imaging. AJNR Am J Neuroradiol. 2007;28:68–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Silver SM, DeSimone JA Jr, Smith DA, Sterns RH. Dialysis disequilibrium syndrome (DDS) in the rat: role of the “reverse urea effect.” Kidney Int. 1992;42:161–6.

    Article  CAS  PubMed  Google Scholar 

  74. Hu MC, Bankir L, Michelet S, Rousselet G, Trinh-Trang-Tan MM. Massive reduction of urea transporters in remnant kidney and brain of uremic rats. Kidney Int. 2000;58:1202–10.

    Article  CAS  PubMed  Google Scholar 

  75. Arieff AI, Massry SG, Barrientos A, Kleeman CR. Brain water and electrolyte metabolism in uremia: effects of slow and rapid hemodialysis. Kidney Int. 1973;4:177–87.

    Article  CAS  PubMed  Google Scholar 

  76. Arieff AI, Guisado R, Massry SG, Lazarowitz VC. Central nervous system pH in uremia and the effects of hemodialysis. J Clin Invest. 1976;58:306–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Hamdi T. Pathogenesis of cerebral edema in patients with acute renal and liver failure and the role of the nephrologist in the management. Curr Opin Nephrol Hypertens. 2018;27(4):289–97.

    Article  PubMed  Google Scholar 

  78. Ronco C. Continuous dialysis is superior to intermittent dialysis in acute kidney injury of the critically ill patients. Nat Clin Pract Nephrol. 2007;3(3):118–9.

    Article  PubMed  Google Scholar 

  79. Keller JA, Chan TY, Chan PH, Gregory GA. Protection of astrocytes by fructose 1,6 bisphosphate and citrate ameliorates neuronal injury under hypoxic conditions. Brain Res. 1996;726:167–73.

    Article  Google Scholar 

  80. Davenport A. Management of acute kidney injury in neurotrauma. HemodiaI Int. 2010;14(1):S27-31.

    Article  Google Scholar 

  81. Liotta EM, Bauer RM, Berman MD, et al. Acute changes in ventricular volume during treatment for hepatic and renal failure. Neurol Clin Pract. 2014;4:478–81.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Dangoisse C, Dickie H, Tovey L, Ostermann M. Correction of hyper-and hyponatraemia during continuous renal replacement therapy. Nephron Clin Pract. 2014;128:394–8.

    Article  CAS  PubMed  Google Scholar 

  83. Pozzoni P, Di Filippo S, Pontoriero G, Locatelli F. Effectiveness of sodium and conductivity kinetic models in predicting end-dialysis plasma water sodium concentration: preliminary results of a single-center experience. Hemodialysis Int. 2007;11(2):169–77.

    Article  Google Scholar 

  84. Broman M, Carlsson O, Friberg H, Wieslander A, Godaly G. Phosphate-containing dialysis solution prevents hypophosphatemia during continuous renal replacement therapy. Acta Anaesthesiol Scand. 2011;55(1):39–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Massry SG, Fadda GZ, Perna AF, Kiersztejn M, Smogorzewski M. Mechanism of organ dysfunction in phosphate depletion: a critical role for a rise in cytosolic calcium. Miner Electrolyte Metab. 1992;18:133–40.

    CAS  PubMed  Google Scholar 

  86. Troyanov S, Geadah D, Ghannoum M, et al. Phosphate addition to hemodiafiltration solution during continuous renal replacement therapy. Intensive Care Med. 2004;30:1662–5.

    Article  PubMed  Google Scholar 

  87. Eagles M, Powell MF, Ayling OGS, Tso MK, Macdonald RL. Acute kidney injury after aneurysmal subarachnoid hemorrhage and its effect on patient outcome: an exploratory analysis. J Neurosurg. 2019;12(12):1–8.

    Google Scholar 

  88. Chau K, Yong J, Ismail K, Griffith N, Liu M, Makris A. Levetiracetam-induced severe acute granulomatous interstitial nephritis. Clin Kidney J. 2012;5:234–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Hurwitz KA, Ingulli EG, Krous HF. Levetiracetam induced interstitial nephritis and renal failure. Pediatr Neurol. 2009;41:57–8.

    Article  PubMed  Google Scholar 

  90. Rossert J. Drug-induced acute interstitial nephritis. Kidney Int. 2001;60(2):804–17.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Anita Zurita Poza for her excellent technical assistance. GRG thanks Biorender for the design of the figures.

Author information

Authors and Affiliations

Authors

Contributions

GRG, RBH designed the work, GRG, RBH collected and analyzed the data, GRG, RBH, and CR drafted the work or substantively revised it, and all authors read and approved the final manuscript.

Corresponding author

Correspondence to Gonzalo Ramírez-Guerrero.

Ethics declarations

Conflict of interest

The authors report no conflicts of interest. The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this article. The authors alone are responsible for the content and writing of this article.

Ethical Approval/Informed Consent

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramírez-Guerrero, G., Baghetti-Hernández, R. & Ronco, C. Acute Kidney Injury at the Neurocritical Care Unit. Neurocrit Care 36, 640–649 (2022). https://doi.org/10.1007/s12028-021-01345-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12028-021-01345-7

Keywords

Navigation