Skip to main content

Advertisement

Log in

Neuromuscular Electrical Stimulation and High-Protein Supplementation After Subarachnoid Hemorrhage: A Single-Center Phase 2 Randomized Clinical Trial

  • Original Work
  • Published:
Neurocritical Care Aims and scope Submit manuscript

Abstract

Introduction

Aneurysmal subarachnoid hemorrhage (SAH) survivors live with long-term residual physical and cognitive disability. We studied whether neuromuscular electrical stimulation (NMES) and high-protein supplementation (HPRO) in the first 2 weeks after SAH could preserve neuromotor and cognitive function as compared to standard of care (SOC) for nutrition and mobilization.

Methods

SAH subjects with a Hunt Hess (HH) grade > 1,modified Fisher score > 1 and BMI < 40 kg/m2 were randomly assigned to SOC or NMES + HPRO. NMES was delivered to bilateral quadricep muscles daily during two 30-min sessions along with HPRO (goal:1.8 g/kg/day) between post-bleed day (PBD) 0 and 14. Primary endpoint was atrophy in the quadricep muscle as measured by the percentage difference in the cross-sectional area from baseline to PBD14 on CT scan. All subjects underwent serial assessments of physical (short performance physical battery, SPPB) cognitive (Montreal Cognitive Assessment Scale, MoCA) and global functional recovery (modified Rankin Scale, mRS) at PBD 14, 42, and 90.

Results

Twenty-five patients (SOC = 13, NMES + HPRO = 12) enrolled between December 2017 and January 2019 with no between-group differences in baseline characteristics (58 years old, 68% women, 50% HH > 3). Median duration of interventions was 12 days (range 9–14) with completion of 98% of NMES sessions and 83% of goal HPRO, and no reported serious adverse events. There was no difference in caloric intake between groups, but HPRO + NMES group received more protein (1.5 ± 0.5 g/kg/d v 0.9 ± 0.4 g/kg/d, P < 0.01). Muscle atrophy was less in NMES + HPRO than the SOC group (6.5 ± 4.1% vs 12.5 ± 6.4%, P 0.01). Higher atrophy was correlated with lower daily protein intake (ρ = - 0.45, P = 0.03) and lower nitrogen balance (ρ = 0.47, P  = 0.02); and worse 3 month SPPB (ρ = -  0.31, P = 0.1) and mRS (ρ = 0.4, P  = 0.04). NMES + HPRO patients had a better median [25%,75] SPPB (12[10, 12] v. 9 [4, 12], P = 0.01) and mRS (1[0,2] v.2[1, 3], P = 0.04) than SOC at PBD 90.

Conclusions

NMES + HPRO appears to be feasible and safe acutely after SAH and may reduce acute quadriceps muscle wasting with a lasting benefit on recovery after SAH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Kapapa T, Woischneck D, Tjahjadi M. Long-term health-related quality of life after spontaneous nontraumatic subarachnoid hemorrhage: self and proxy reports in a 10-year period. World Neurosurg. 2014;81:105–9.

    Article  PubMed  Google Scholar 

  2. Provencio JJ, Vora N. Subarachnoid hemorrhage and inflammation: bench to bedside and back. Semin Neurol. 2005;25:435–44.

    Article  PubMed  Google Scholar 

  3. Springer MV, Schmidt JM, Wartenberg KE, Frontera JA, Badjatia N, Mayer SA. Predictors of global cognitive impairment 1 year after subarachnoid hemorrhage. Neurosurgery. 2009;65:1043-1050; discussion 1050-1041.

  4. Badjatia N, Fernandez L, Schlossberg MJ, Schmidt JM, Claassen J, Lee K, et al. Relationship between energy balance and complications after subarachnoid hemorrhage. JPEN J Parenter Enteral Nutr. 2010;34:64–9.

    Article  PubMed  Google Scholar 

  5. Badjatia N, Monahan A, Carpenter A, Zimmerman J, Schmidt JM, Claassen J, et al. Inflammation, negative nitrogen balance, and outcome after aneurysmal subarachnoid hemorrhage. Neurology. 2015;84:680–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Puthucheary ZA, Rawal J, McPhail M, Connolly B, Ratnayake G, Chan P, et al. Acute skeletal muscle wasting in critical illness. JAMA. 2013;310:1591–600.

    Article  CAS  PubMed  Google Scholar 

  7. Badjatia N, Carpenter A, Fernandez L, Schmidt JM, Mayer SA, Claassen J, et al. Relationship between c-reactive protein, systemic oxygen consumption, and delayed cerebral ischemia after aneurysmal subarachnoid hemorrhage. Stroke. 2011;42:2436–42.

    Article  CAS  PubMed  Google Scholar 

  8. Harmsen WJ, Ribbers GM, Zegers B, Sneekes EM, Praet SF, Heijenbrok-Kal MH, et al. Impaired muscle strength may contribute to fatigue in patients with aneurysmal subarachnoid hemorrhage. Int J Rehabil Res. 2017;40(1):29–36.

    Article  PubMed  Google Scholar 

  9. Heyland DK, Stapleton RD, Mourtzakis M, Hough CL, Morris P, Deutz NE, et al. Combining nutrition and exercise to optimize survival and recovery from critical illness: conceptual and methodological issues. Clin Nutr. 2016;35:1196–206.

    Article  PubMed  Google Scholar 

  10. Hafer-Macko CE, Ryan AS, Ivey FM, Macko RF. Skeletal muscle changes after hemiparetic stroke and potential beneficial effects of exercise intervention strategies. J Rehabil Res Dev. 2008;45:261–72.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Dirks ML, Hansen D, Van Assche A, Dendale P, Van Loon LJ. Neuromuscular electrical stimulation prevents muscle wasting in critically ill comatose patients. Clin Sci (Lond). 2015;128:357–65.

    Article  CAS  Google Scholar 

  12. Drummond MJ, Rasmussen BB. Leucine-enriched nutrients and the regulation of mammalian target of rapamycin signalling and human skeletal muscle protein synthesis. Curr Opin Clin Nutr Metab Care. 2008;11:222–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Mayberg MR, Batjer HH, Dacey R, et al. Guidelines for the management of aneurysmal subarachnoid hemorrhage. A statement for health care professionals from a special writing group of the stroke council, american heart association. Circulation. 1994;90:2592–605.

    Article  CAS  PubMed  Google Scholar 

  14. Diringer MN, Bleck TP, Claude Hemphill J, Menon D, Shutter L, Vespa P, et al. Critical care management of patients following aneurysmal subarachnoid hemorrhage: recommendations from the neurocritical care society’s multidisciplinary consensus conference. Neurocrit Care. 2011;15:211–40.

    Article  PubMed  Google Scholar 

  15. Harris PA, Taylor R, Minor BL, Elliott V, Fernandez M, O’Neal L, et al. The redcap consortium: building an international community of software platform partners. J Biomed Inform. 2019;95:103208.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Harris PA, Taylor R, Thielke R, Payne J, Gonzalez N, Conde JG. Research electronic data capture (redcap)–a metadata-driven methodology and workflow process for providing translational research informatics support. J Biomed Inform. 2009;42:377–81.

    Article  PubMed  Google Scholar 

  17. Khwaja A. Kdigo clinical practice guidelines for acute kidney injury. Nephron Clin Pract. 2012;120:c179–84.

    PubMed  Google Scholar 

  18. Lin SC, Lin KH, Lee YC, Peng HY, Chiu EC. Test-retest reliability of the mini nutritional assessment and its relationship with quality of life in patients with stroke. PLoS ONE. 2019;14:e0218749.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Nishioka S, Omagari K, Nishioka E, Mori N, Taketani Y, Kayashita J. Concurrent and predictive validity of the mini nutritional assessment short-form and the geriatric nutritional risk index in older stroke rehabilitation patients. J Hum Nutr Diet. 2020;33:12–22.

    Article  CAS  PubMed  Google Scholar 

  20. Mifflin MD, St Jeor ST, Hill LA, Scott BJ, Daugherty SA, Koh YO. A new predictive equation for resting energy expenditure in healthy individuals. Am J Clin Nutr. 1990;51:241–7.

    Article  CAS  PubMed  Google Scholar 

  21. Frankenfield D. Validation of an equation for resting metabolic rate in older obese, critically ill patients. JPEN J Parenter Enteral Nutr. 2011;35:264–9.

    Article  PubMed  Google Scholar 

  22. Frankenfield D, Smith JS, Cooney RN. Validation of 2 approaches to predicting resting metabolic rate in critically ill patients. JPEN J Parenter Enteral Nutr. 2004;28:259–64.

    Article  PubMed  Google Scholar 

  23. Ryan AS, Dobrovolny CL, Smith GV, Silver KH, Macko RF. Hemiparetic muscle atrophy and increased intramuscular fat in stroke patients. Arch Phys Med Rehabil. 2002;83:1703–7.

    Article  PubMed  Google Scholar 

  24. de Haan R, Limburg M, Bossuyt P, van der Meulen J, Aaronson N. The clinical meaning of rankin ‘handicap’ grades after stroke. Stroke. 1995;26:2027–30.

    Article  PubMed  Google Scholar 

  25. Nasreddine ZS, Phillips NA, Bedirian V, Charbonneau S, Whitehead V, Collin I, et al. The montreal cognitive assessment, moca: a brief screening tool for mild cognitive impairment. J Am Geriatr Soc. 2005;53:695–9.

    Article  PubMed  Google Scholar 

  26. Cella D, Lai JS, Nowinski CJ, Victorson D, Peterman A, Miller D, et al. Neuro-QOL: brief measures of health-related quality of life for clinical research in neurology. Neurology. 2012;78(23):1860–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Gardner AK, Ghita GL, Wang Z, Ozrazgat-Baslanti T, Raymond SL, Mankowski RT, et al. The development of chronic critical illness determines physical function, quality of life, and long-term survival among early survivors of sepsis in surgical icus. Crit Care Med. 2019;47:566–73.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Verceles AC, Wells CL, Sorkin JD, Terrin ML, Beans J, Jenkins T, et al. A multimodal rehabilitation program for patients with icu acquired weakness improves ventilator weaning and discharge home. J Crit Care. 2018;47:204–10.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Guralnik JM, Simonsick EM, Ferrucci L, Glynn RJ, Berkman LF, Blazer DG, et al. A short physical performance battery assessing lower extremity function: association with self-reported disability and prediction of mortality and nursing home admission. J Gerontol. 1994;49:M85–94.

    Article  CAS  PubMed  Google Scholar 

  30. Carmichael H, Joyce S, Smith T, Patton L, Lambert Wagner A, Wiktor AJ. Safety and efficacy of intraoperative gastric feeding during burn surgery. Burns. 2019;45:1089–93.

    Article  PubMed  Google Scholar 

  31. Jacobs DG, Jacobs DO, Kudsk KA, Moore FA, Oswanski MF, Poole GV, et al. Practice management guidelines for nutritional support of the trauma patient. J Trauma. 2004;57:660-678; discussion 679.

  32. Kubo Y, Koji T, Kashimura H, Otawara Y, Ogawa A, Ogasawara K. Appetite loss may be induced by lower serum ghrelin and higher serum leptin concentrations in subarachnoid hemorrhage patients. Nutr Neurosci. 2014;17:230–3.

    Article  CAS  PubMed  Google Scholar 

  33. Nozoe M, Kanai M, Kubo H, Kitamura Y, Yamamoto M, Furuichi A, et al. Changes in quadriceps muscle thickness, disease severity, nutritional status, and c-reactive protein after acute stroke. J Stroke Cerebrovasc Dis. 2016;25:2470–4.

    Article  PubMed  Google Scholar 

  34. Wall BT, Dirks ML, Snijders T, Senden JM, Dolmans J, van Loon LJ. Substantial skeletal muscle loss occurs during only 5 days of disuse. Acta Physiol (Oxf). 2014;210:600–11.

    Article  CAS  Google Scholar 

  35. Shah SO, Kraft J, Ankam N, Bu P, Stout K, Melnyk S, et al. Early ambulation in patients with external ventricular drains: results of a quality improvement project. J Intensive Care Med. 2018;33:370–4.

    Article  PubMed  Google Scholar 

  36. Yataco RA, Arnold SM, Brown SM, David Freeman W, Carmen Cononie C, Heckman MG, et al. Early progressive mobilization of patients with external ventricular drains: safety and feasibility. Neurocrit Care. 2019;30:414–20.

    Article  CAS  PubMed  Google Scholar 

  37. Young B, Moyer M, Pino W, Kung D, Zager E, Kumar MA. Safety and feasibility of early mobilization in patients with subarachnoid hemorrhage and external ventricular drain. Neurocrit Care. 2019;31:88–96.

    Article  PubMed  Google Scholar 

  38. Morris PE, Griffin L, Berry M, Thompson C, Hite RD, Winkelman C, et al. Receiving early mobility during an intensive care unit admission is a predictor of improved outcomes in acute respiratory failure. Am J Med Sci. 2011;341:373–7.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Slooter AJ, Van De Leur RR, Zaal IJ. Delirium in critically ill patients. Handb Clin Neurol. 2017;141:449–66.

    Article  CAS  PubMed  Google Scholar 

  40. Bohe J, Low A, Wolfe RR, Rennie MJ. Human muscle protein synthesis is modulated by extracellular, not intramuscular amino acid availability: a dose-response study. J Physiol. 2003;552:315–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Bohe J, Low JF, Wolfe RR, Rennie MJ. Latency and duration of stimulation of human muscle protein synthesis during continuous infusion of amino acids. J Physiol. 2001;532:575–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wall BT, Dirks ML, Snijders T, van Dijk JW, Fritsch M, Verdijk LB, et al. Short-term muscle disuse lowers myofibrillar protein synthesis rates and induces anabolic resistance to protein ingestion. Am J Physiol Endocrinol Metab. 2016;310:E137–47.

    Article  PubMed  Google Scholar 

  43. Wall BT, Gorissen SH, Pennings B, Koopman R, Groen BB, Verdijk LB, et al. Aging is accompanied by a blunted muscle protein synthetic response to protein ingestion. PLoS ONE. 2015;10:e0140903.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Wall BT, Snijders T, Senden JM, Ottenbros CL, Gijsen AP, Verdijk LB, et al. Disuse impairs the muscle protein synthetic response to protein ingestion in healthy men. J Clin Endocrinol Metab. 2013;98:4872–81.

    Article  CAS  PubMed  Google Scholar 

  45. Drummond MJ, Dickinson JM, Fry CS, Walker DK, Gundermann DM, Reidy PT, et al. Bed rest impairs skeletal muscle amino acid transporter expression, mtorc1 signaling, and protein synthesis in response to essential amino acids in older adults. Am J Physiol Endocrinol Metab. 2012;302:E1113–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wall BT, Dirks ML, Verdijk LB, Snijders T, Hansen D, Vranckx P, et al. Neuromuscular electrical stimulation increases muscle protein synthesis in elderly type 2 diabetic men. Am J Physiol Endocrinol Metab. 2012;303:E614–23.

    Article  CAS  PubMed  Google Scholar 

  47. Gibson JN, Smith K, Rennie MJ. Prevention of disuse muscle atrophy by means of electrical stimulation: maintenance of protein synthesis. Lancet. 1988;2:767–70.

    Article  CAS  PubMed  Google Scholar 

  48. Dirks ML, Wall BT, Snijders T, Ottenbros CL, Verdijk LB, van Loon LJ. Neuromuscular electrical stimulation prevents muscle disuse atrophy during leg immobilization in humans. Acta Physiol (Oxf). 2014;210:628–41.

    Article  CAS  Google Scholar 

  49. Dirks ML, Wall BT, van Loon LJC. Interventional strategies to combat muscle disuse atrophy in humans: focus on neuromuscular electrical stimulation and dietary protein. J Appl Physiol. 1985;2018(125):850–61.

    Google Scholar 

  50. Harmsen WJ, Ribbers GM, Heijenbrok-Kal MH, Khajeh L, Sneekes EM, van Kooten F, et al. Fatigue after aneurysmal subarachnoid hemorrhage is highly prevalent in the first-year postonset and related to low physical fitness: a longitudinal study. Am J Phys Med Rehabil. 2019;98:7–13.

    Article  PubMed  Google Scholar 

Download references

Funding

This study was supported by the Baltimore VAMC—Maryland Exercise and Robotics Center of Excellence (NB). Investing in Clinical Neurocritical Care Research (INCLINE) grant from the Neurocritical Care Society (NB). VA RR&D Senior Research Career Scientist Award (ASR), National Institutes of Health P30AG028747 and P30DK072488. The NMES device (L300 Plus® system) used in this study was given at no cost to the investigators by Bioness, Inc (Valencia, CA).

Author information

Authors and Affiliations

Authors

Contributions

All authors provided substantial contributions to conception and design, or acquisition of data, or analysis and interpretation of data; drafting the article or revising it critically for important intellectual content; and final approval of the version to be published.

Corresponding author

Correspondence to Neeraj Badjatia.

Ethics declarations

Conflict of interest

All authors declare that they have no confict of interest.

Ethical approval

The conduct of this study was approved by the University of Maryland, Baltimore Institutional Review Board, and was registered on clinicaltrials.gov (NCT03201094).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 26 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Badjatia, N., Sanchez, S., Judd, G. et al. Neuromuscular Electrical Stimulation and High-Protein Supplementation After Subarachnoid Hemorrhage: A Single-Center Phase 2 Randomized Clinical Trial. Neurocrit Care 35, 46–55 (2021). https://doi.org/10.1007/s12028-020-01138-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12028-020-01138-4

Keywords

Navigation