Abstract
Background/Objective
Stress-related mucosal bleeding (SRMB) occurs in approximately 2–4% of critically ill patients. Patients with aneurysmal subarachnoid hemorrhage (aSAH) have a (diffuse) space-occupying lesion, are critically ill, often require mechanical ventilation, and frequently receive anticoagulation or antiplatelet therapy after aneurysm embolization, all of which may be risk factors for SRMB. However, no studies have evaluated SRMB in patients with aSAH. Aims of the study were to determine the incidence of SRMB in aSAH patients, evaluate the effect of acid suppression on SRMB, and identify specific risk factors for SRMB.
Methods
This was a multicenter, retrospective, observational study conducted across 17 centers. Each center reviewed up to 50 of the most recent cases of aSAH. Patients with length of stay (LOS) < 48 h or active GI bleeding on admission were excluded. Variables related to demographics, aSAH severity, gastrointestinal (GI) bleeding, provision of SRMB prophylaxis, adverse events, intensive care unit (ICU), and hospital LOS were collected for the first 21 days of admission or until hospital discharge, whichever came first. Descriptive statistics were used to analyze the data. A multivariate logistic regression modeling was utilized to examine the relationship between specific risk factors and the incidence of clinically important GI bleeding in patients with aSAH.
Results
A total of 627 patients were included. The overall incidence of clinically important GI bleeding was 4.9%. Of the patients with clinically important GI bleeding, 19 (61%) received pharmacologic prophylaxis prior to evidence of GI bleeding, while 12 (39%) were not on pharmacologic prophylaxis at the onset of GI bleeding. Patients who received an acid suppressant agent were less likely to experience GI bleeding than patients who did not receive pharmacologic prophylaxis prior to evidence of bleeding (OR 0.39, 95% CI 0.18–0.83). The multivariate regression analysis identified any instance of elevated intracranial pressure, creatinine clearance < 60 ml/min and the incidence of cerebral vasospasm as specific risk factors associated with GI bleeding. Cerebral vasospasm has not previously been described as a risk for GI bleeding (OR 2.5 95% CI 1.09–5.79).
Conclusions
Clinically important GI bleeding occurred in 4.9% of patients with aSAH, similar to the general critical care population. Risk factors associated with GI bleeding were prolonged mechanical ventilation (> 48 h), creatinine clearance < 60 ml/min, presence of coagulopathy, elevation of intracranial pressure, and cerebral vasospasm. Further prospective research is needed to confirm this observation within this patient population.
This is a preview of subscription content, access via your institution.
References
Cook DJ, Fuller HD, Guyatt GH, et al. Risk factors for gastrointestinal bleeding in critically ill patients Canadian Critical Care Trials Group. N Engl J Med. 1994;330(6):377–81.
Lu WY, Rhoney DH, Boling WB, Johnson JD, Smith TC. A review of stress ulcer prophylaxis in the neurosurgical intensive care unit. Neurosurgery. 1997;41(2):416–25 (discussion 425–416).
Cushing H. Peptic ulcer and the interbrain. Surg Gynecol Obstet. 1932;55:1–34.
Cook D, Guyatt G, Marshall J, et al. A comparison of sucralfate and ranitidine for the prevention of upper gastrointestinal bleeding in patients requiring mechanical ventilation. N Engl J Med. 1998;338(12):791–7.
Liu BL, Li B, Zhang X, et al. A randomized controlled study comparing omeprazole and cimetidine for the prophylaxis of stress-related upper gastrointestinal bleeding in patients with intracerebral hemorrhage. J Neurosurg. 2013;118(1):115–20.
Conrad SA, Gabrielli A, Margolis B, et al. Randomized, double-blind comparison of immediate-release omeprazole oral suspension versus intravenous cimetidine for the prevention of upper gastrointestinal bleeding in critically ill patients. Crit Care Med. 2005;33(4):760–5.
Wartenberg KE, Schmidt JM, Claassen J, et al. Impact of medical complications on outcome after subarachnoid hemorrhage. Crit Care Med. 2006;34(3):617–23 (quiz 624).
Heuer GG, Smith MJ, Elliott JP, Winn HR, LeRoux PD. Relationship between intracranial pressure and other clinical variables in patients with aneurysmal subarachnoid hemorrhage. J Neurosurg. 2004;101(3):408–16.
Frontera JA, Fernandez A, Schmidt JM, et al. Impact of nosocomial infectious complications after subarachnoid hemorrhage. Neurosurgery. 2008;62(1):80–7 (discussion 87).
Cinotti R, Dordonnat-Moynard A, Feuillet F, et al. Risk factors and pathogens involved in early ventilator-acquired pneumonia in patients with severe subarachnoid hemorrhage. Eur J Clin Microbiol Infect Dis. 2014;33(5):823–30.
Kim KS, Fraser JF, Grupke S, Cook AM. Management of antiplatelet therapy in patients undergoing neuroendovascular procedures. J Neurosurg. 2018;129(4):890–905.
James RF, Khattar NK, Aljuboori ZS, et al. Continuous infusion of low-dose unfractionated heparin after aneurysmal subarachnoid hemorrhage: a preliminary study of cognitive outcomes. J Neurosurg. 2018;130:1–8.
Khattar NK, Bak E, White AC, James RF. Heparin treatment in aneurysmal subarachnoid hemorrhage: a review of human studies. Acta Neurochir Suppl. 2020;127:15–9.
MacLaren R, Reynolds PM, Allen RR. Histamine-2 receptor antagonists vs proton pump inhibitors on gastrointestinal tract hemorrhage and infectious complications in the intensive care unit. JAMA Int Med. 2014;174(4):564–74.
Misra UK, Kalita J, Pandey S, Mandal SK, Srivastava MA. randomized placebo controlled trial of ranitidine versus sucralfate in patients with spontaneous intracerebral hemorrhage for prevention of gastric hemorrhage. J Neurol Sci. 2005;239(1):5–10.
Sarrafzadeh A, Schlenk F, Meisel A, Dreier J, Vajkoczy P, Meisel C. Immunodepression after aneurysmal subarachnoid hemorrhage. Stroke. 2011;42(1):53–8.
Schirmer CM, Kornbluth J, Heilman CB, Bhardwaj A. Gastrointestinal prophylaxis in neurocritical care. Neurocrit Care. 2012;16(1):184–93.
Tsuchiya J, Ito Y, Hino T, Ohashi H, Kunieda T, Sakata K. Stress ulcer accompanying subarachnoid hemorrhage–a new rat model. Jpn J Surg. 1983;13(4):373–80.
Harris PA, Taylor R, Thielke R, Payne J, Gonzalez N, Conde JG. Research electronic data capture (REDCap)–a metadata-driven methodology and workflow process for providing translational research informatics support. J Biomed Inform. 2009;42(2):377–81.
Vincent JL. Give your patient a fast hug (at least) once a day. Crit Care Med. 2005;33(6):1225–9.
Pradilla G, Chaichana KL, Hoang S, Huang J, Tamargo RJ. Inflammation and cerebral vasospasm after subarachnoid hemorrhage. Neurosurg Clin N Am. 2010;21(2):365–79.
Smith MJ, Le Roux PD, Elliott JP, Winn HR. Blood transfusion and increased risk for vasospasm and poor outcome after subarachnoid hemorrhage. J Neurosurg. 2004;101(1):1–7.
Ogura T, Satoh A, Ooigawa H, et al. Characteristics and prognostic value of acute catecholamine surge in patients with aneurysmal subarachnoid hemorrhage. Neurol Res. 2012;34(5):484–90.
Moussouttas M, Lai EW, Huynh TT, et al. Association between acute sympathetic response, early onset vasospasm, and delayed vasospasm following spontaneous subarachnoid hemorrhage. J Clin Neurosci. 2014;21(2):256–62.
Dive A, Foret F, Jamart J, Bulpa P, Installe E. Effect of dopamine on gastrointestinal motility during critical illness. Intensive Care Med. 2000;26:901–7.
Steinberg K. Stress-related mucosal disease in the critically ill patient: risk factors and strategies to prevent stress-related bleeding in the intensive care unit. Crit Care Med. 2002;30(6):S362–4.
Naredi S, Lambert G, Eden E, et al. Increased sympathetic nervous activity in patients with nontraumatic subarachnoid hemorrhage. Stroke. 2000;31(4):901–6.
Hessel EA. 2nd the brain and the heart. Anesth Analg. 2006;103(3):522–6.
Huang HB, Jiang W, Wang CY, Qin HY, Du B. Stress ulcer prophylaxis in intensive care unit patients receiving enteral nutrition: a systematic review and meta-analysis. Crit Care. 2018;22(1):20.
Funding
The study was not funded. Investigators used REDCap for data entry (NIH CTSA UL1TR000117).
Author information
Authors and Affiliations
Contributions
DA and AC primarily conceived the study design, but all authors had input on study design and execution. Data analysis was performed primarily by DA, AS, and AMC; all authors had input on data interpretation. DA, AS, and AMC primarily wrote the manuscript, but all authors were able to review and revise ad lib. All authors provided a final review and approval of the manuscript.
Corresponding author
Ethics declarations
Conflict of interest
No pertinent conflicts of interest were reported.
Ethical Approval
The study was approved via expedited review by the University of Kentucky IRB.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Ali, D., Barra, M.E., Blunck, J. et al. Stress-Related Gastrointestinal Bleeding in Patients with Aneurysmal Subarachnoid Hemorrhage: A Multicenter Retrospective Observational Study. Neurocrit Care 35, 39–45 (2021). https://doi.org/10.1007/s12028-020-01137-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12028-020-01137-5
Keywords
- Stress ulcer prophylaxis
- Acid-suppressive therapy
- Subarachnoid hemorrhage
- Cerebral vasospasm
- Proton pump inhibitors
- Histamine-2-receptor antagonists
- Gastrointestinal hemorrhage
- Neurocritical care