Skip to main content

Advertisement

Log in

Delayed Cerebral Ischemia After Subarachnoid Hemorrhage: Experimental-Clinical Disconnect and the Unmet Need

  • Review Article
  • Published:
Neurocritical Care Aims and scope Submit manuscript

Abstract

Background

Delayed cerebral ischemia (DCI) is among the most dreaded complications following aneurysmal subarachnoid hemorrhage (SAH). Despite advances in neurocritical care, DCI remains a significant cause of morbidity and mortality, prolonged intensive care unit and hospital stay, and high healthcare costs. Large artery vasospasm has classically been thought to lead to DCI. However, recent failure of clinical trials targeting vasospasm to improve outcomes has underscored the disconnect between large artery vasospasm and DCI. Therefore, interest has shifted onto other potential mechanisms such as microvascular dysfunction and spreading depolarizations. Animal models can be instrumental in dissecting pathophysiology, but clinical relevance can be difficult to establish.

Methods

Here, we performed a systematic review of the literature on animal models of SAH, focusing specifically on DCI and neurological deficits.

Results

We find that dog, rabbit and rodent models do not consistently lead to DCI, although some degree of delayed vascular dysfunction is common. Primate models reliably recapitulate delayed neurological deficits and ischemic brain injury; however, ethical issues and cost limit their translational utility.

Conclusions

To facilitate translation, clinically relevant animal models that reproduce the pathophysiology and cardinal features of DCI after SAH are urgently needed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Macdonald RL. Delayed neurological deterioration after subarachnoid haemorrhage. Nature reviews. Neurology. 2014;10(1):44–58.

    CAS  PubMed  Google Scholar 

  2. Zoerle T, Ilodigwe DC, Wan H, Lakovic K, Sabri M, Ai J, et al. Pharmacologic reduction of angiographic vasospasm in experimental subarachnoid hemorrhage: systematic review and meta-analysis. J Cereb Blood Flow Metab. 2012;32(9):1645–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Macdonald RL, Kassell NF, Mayer S, Ruefenacht D, Schmiedek P, Weidauer S, et al. Clazosentan to overcome neurological ischemia and infarction occurring after subarachnoid hemorrhage (CONSCIOUS-1): randomized, double-blind, placebo-controlled phase 2 dose-finding trial. Stroke. 2008;39(11):3015–21.

    Article  CAS  PubMed  Google Scholar 

  4. van der Worp HB, Howells DW, Sena ES, Porritt MJ, Rewell S, O’Collins V, et al. Can animal models of disease reliably inform human studies? PLoS Med. 2010;7(3):e1000245.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Dreier JP, Major S, Manning A, Woitzik J, Drenckhahn C, Steinbrink J, et al. Cortical spreading ischaemia is a novel process involved in ischaemic damage in patients with aneurysmal subarachnoid haemorrhage. Brain J Neurol. 2009;132(Pt 7):1866–81.

    Article  Google Scholar 

  6. Naraoka M, Matsuda N, Shimamura N, Asano K, Ohkuma H. The role of arterioles and the microcirculation in the development of vasospasm after aneurysmal SAH. Biomed Res Int. 2014;2014:253746.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Chung DY, Oka F, Ayata C. Spreading depolarizations: a therapeutic target against delayed cerebral ischemia after subarachnoid hemorrhage. J Clin Neurophysiol. 2016;33(3):196–202.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Garzon-Muvdi T, Pradilla G, Ruzevick JJ, Bender M, Edwards L, Grossman R, et al. A glutamate receptor antagonist, S-4-carboxyphenylglycine (S-4-CPG), inhibits vasospasm after subarachnoid hemorrhage in haptoglobin 2-2 mice [corrected]. Neurosurgery. 2013;73(4):719–28 (discussion 729).

    Article  PubMed  Google Scholar 

  9. Nyberg C, Karlsson T, Hillered L, Ronne Engstrom E. Metabolic pattern of the acute phase of subarachnoid hemorrhage in a novel porcine model: studies with cerebral microdialysis with high temporal resolution. PLoS ONE. 2014;9(6):e99904.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Hamming AM, van der Toorn A, Rudrapatna US, Ma L, van Os HJ, Ferrari MD, et al. Valproate reduces delayed brain injury in a rat model of subarachnoid hemorrhage. Stroke. 2017;48(2):452–8.

    Article  CAS  PubMed  Google Scholar 

  11. Oka F, Hoffmann U, Lee JH, Shin HK, Chung DY, Yuzawa I, et al. Requisite ischemia for spreading depolarization occurrence after subarachnoid hemorrhage in rodents. J Cereb Blood Flow Metab. 2017;37(5):1829–40.

    Article  PubMed  Google Scholar 

  12. Marbacher S, Fandino J, Kitchen ND. Standard intracranial in vivo animal models of delayed cerebral vasospasm. Br J Neurosurg. 2010;24(4):415–34.

    Article  PubMed  Google Scholar 

  13. Bassiouni H, Schulz R, Dorge H, Stolke D, Heusch G. The impact of subarachnoid hemorrhage on regional cerebral blood flow and large-vessel diameter in the canine model of chronic vasospasm. J Stroke Cerebrovasc Dis. 2007;16(2):45–51.

    Article  PubMed  Google Scholar 

  14. Siler DA, Martini RP, Ward JP, Nelson JW, Borkar RN, Zuloaga KL, et al. Protective role of p450 epoxyeicosanoids in subarachnoid hemorrhage. Neurocrit Care. 2015;22(2):306–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Povlsen GK, Edvinsson L. MEK1/2 inhibitor U0126 but not endothelin receptor antagonist clazosentan reduces upregulation of cerebrovascular contractile receptors and delayed cerebral ischemia, and improves outcome after subarachnoid hemorrhage in rats. J Cereb Blood Flow Metab. 2015;35(2):329–37.

    Article  CAS  PubMed  Google Scholar 

  16. Guresir E, Vasiliadis N, Dias S, Raab P, Seifert V, Vatter H. The effect of common carotid artery occlusion on delayed brain tissue damage in the rat double subarachnoid hemorrhage model. Acta Neurochir. 2012;154(1):11–9.

    Article  PubMed  Google Scholar 

  17. Wang H, James ML, Venkatraman TN, Wilson LJ, Lyuboslavsky P, Myers SJ, et al. pH-sensitive NMDA inhibitors improve outcome in a murine model of SAH. Neurocrit Care. 2014;20(1):119–31.

    Article  CAS  PubMed  Google Scholar 

  18. Mutoh T, Mutoh T, Sasaki K, Yamamoto Y, Tsuru Y, Tsubone H, et al. Isoflurane postconditioning with cardiac support promotes recovery from early brain injury in mice after severe subarachnoid hemorrhage. Life Sci. 2016;153:35–40.

    Article  CAS  PubMed  Google Scholar 

  19. Mutoh T, Mutoh T, Nakamura K, Yamamoto Y, Tsuru Y, Tsubone H, et al. Acute cardiac support with intravenous milrinone promotes recovery from early brain injury in a murine model of severe subarachnoid haemorrhage. Clin Exp Pharmacol Physiol. 2017;44(4):463–9.

    Article  CAS  PubMed  Google Scholar 

  20. Mutoh T, Mutoh T, Nakamura K, Sasaki K, Tatewaki Y, Ishikawa T, et al. Inotropic support against early brain injury improves cerebral hypoperfusion and outcomes in a murine model of subarachnoid hemorrhage. Brain Res Bull. 2017;130:18–26.

    Article  CAS  PubMed  Google Scholar 

  21. Mutoh T, Mutoh T, Sasaki K, Nakamura K, Tatewaki Y, Ishikawa T, et al. Neurocardiac protection with milrinone for restoring acute cerebral hypoperfusion and delayed ischemic injury after experimental subarachnoid hemorrhage. Neurosci Lett. 2017;640:70–5.

    Article  CAS  PubMed  Google Scholar 

  22. van den Bergh WM, Schepers J, Veldhuis WB, Nicolay K, Tulleken CA, Rinkel GJ. Magnetic resonance imaging in experimental subarachnoid haemorrhage. Acta Neurochir. 2005;147(9):977–83 (discussion 983).

    Article  PubMed  Google Scholar 

  23. Hamming AM, Wermer MJ, Umesh Rudrapatna S, Lanier C, van Os HJ, van den Bergh WM, et al. Spreading depolarizations increase delayed brain injury in a rat model of subarachnoid hemorrhage. J Cereb Blood Flow Metab. 2016;36(7):1224–31.

    Article  PubMed  Google Scholar 

  24. Macdonald RL, Weir BK. A review of hemoglobin and the pathogenesis of cerebral vasospasm. Stroke. 1991;22(8):971–82.

    Article  CAS  PubMed  Google Scholar 

  25. Megyesi JF, Vollrath B, Cook DA, Findlay JM. In vivo animal models of cerebral vasospasm: a review. Neurosurgery. 2000;46(2):448–60 (discussion 460–1).

    Article  CAS  PubMed  Google Scholar 

  26. Vergouwen MD, Vermeulen M, Coert BA, Stroes ES, Roos YB. Microthrombosis after aneurysmal subarachnoid hemorrhage: an additional explanation for delayed cerebral ischemia. J Cereb Blood Flow Metab. 2008;28(11):1761–70.

    Article  PubMed  Google Scholar 

  27. Rowland MJ, Hadjipavlou G, Kelly M, Westbrook J, Pattinson KT. Delayed cerebral ischaemia after subarachnoid haemorrhage: looking beyond vasospasm. Br J Anaesth. 2012;109(3):315–29.

    Article  CAS  PubMed  Google Scholar 

  28. Tada Y, Wada K, Shimada K, Makino H, Liang EI, Murakami S, et al. Roles of hypertension in the rupture of intracranial aneurysms. Stroke. 2014;45(2):579–86.

    Article  PubMed  Google Scholar 

  29. Tada Y, Kanematsu Y, Kanematsu M, Nuki Y, Liang EI, Wada K, et al. A mouse model of intracranial aneurysm: technical considerations. Acta Neurochir Suppl. 2011;111:31–5.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Nuki Y, Tsou TL, Kurihara C, Kanematsu M, Kanematsu Y, Hashimoto T. Elastase-induced intracranial aneurysms in hypertensive mice. Hypertension. 2009;54(6):1337–44.

    Article  CAS  PubMed  Google Scholar 

  31. Kanematsu Y, Kanematsu M, Kurihara C, Tada Y, Tsou TL, van Rooijen N, et al. Critical roles of macrophages in the formation of intracranial aneurysm. Stroke. 2011;42(1):173–8.

    Article  PubMed  Google Scholar 

  32. Zhao J, Lin X, He C, Yang GY, Ling F. Study of cerebral aneurysms in a modified rat model: from real-time imaging to histological analysis. J Clin Neurosci. 2015;22(2):373–7.

    Article  PubMed  Google Scholar 

  33. Makino H, Tada Y, Wada K, Liang EI, Chang M, Mobashery S, et al. Pharmacological stabilization of intracranial aneurysms in mice: a feasibility study. Stroke. 2012;43(9):2450–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Jeon H, Ai J, Sabri M, Tariq A, Shang X, Chen G, et al. Neurological and neurobehavioral assessment of experimental subarachnoid hemorrhage. BMC Neurosci. 2009;10:103.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Mandeville ET, Ayata C, Zheng Y, Mandeville JB. Translational MR neuroimaging of stroke and recovery. Transl Stroke Res. 2017;8(1):22–32.

    Article  CAS  PubMed  Google Scholar 

  36. Kilkenny C, Browne WJ, Cuthill IC, Emerson M, Altman DG. Improving bioscience research reporting: the ARRIVE guidelines for reporting animal research. PLoS Biol. 2010;8(6):e1000412.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Luo C, Yao X, Li J, He B, Liu Q, Ren H, et al. Paravascular pathways contribute to vasculitis and neuroinflammation after subarachnoid hemorrhage independently of glymphatic control. Cell Death Dis. 2016;7:e2160.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. McConnell ED, Wei HS, Reitz KM, Kang H, Takano T, Vates GE, et al. Cerebral microcirculatory failure after subarachnoid hemorrhage is reversed by hyaluronidase. J Cereb Blood Flow Metab. 2016;36(9):1537–52.

    Article  CAS  PubMed  Google Scholar 

  39. Sabri M, Ai J, Lakovic K, D’Abbondanza J, Ilodigwe D, Macdonald RL. Mechanisms of microthrombi formation after experimental subarachnoid hemorrhage. Neuroscience. 2012;224:26–37.

    Article  CAS  PubMed  Google Scholar 

  40. Sabri M, Ai J, Lakovic K, Macdonald RL. Mechanisms of microthrombosis and microcirculatory constriction after experimental subarachnoid hemorrhage. Acta Neurochir Suppl. 2013;115:185–92.

    PubMed  Google Scholar 

  41. Sabri M, Ai J, Lass E, D’Abbondanza J, Macdonald RL. Genetic elimination of eNOS reduces secondary complications of experimental subarachnoid hemorrhage. J Cereb Blood Flow Metab. 2013;33(7):1008–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Vergouwen MD, Knaup VL, Roelofs JJ, de Boer OJ, Meijers JC. Effect of recombinant ADAMTS-13 on microthrombosis and brain injury after experimental subarachnoid hemorrhage. JTH. 2014;12(6):943–7.

    CAS  PubMed  Google Scholar 

  43. Yagi K, Lidington D, Wan H, Fares JC, Meissner A, Sumiyoshi M, et al. Therapeutically targeting tumor necrosis factor-alpha/sphingosine-1-phosphate signaling corrects myogenic reactivity in subarachnoid hemorrhage. Stroke. 2015;46(8):2260–70.

    Article  CAS  PubMed  Google Scholar 

  44. Parra A, McGirt MJ, Sheng H, Laskowitz DT, Pearlstein RD, Warner DS. Mouse model of subarachnoid hemorrhage associated cerebral vasospasm: methodological analysis. Neurol Res. 2002;24(5):510–6.

    Article  PubMed  Google Scholar 

  45. Sheng H, Spasojevic I, Tse HM, Jung JY, Hong J, Zhang Z, et al. Neuroprotective efficacy from a lipophilic redox-modulating Mn(III) N-Hexylpyridylporphyrin, MnTnHex-2-PyP: rodent models of ischemic stroke and subarachnoid hemorrhage. J Pharmacol Exp Ther. 2011;338(3):906–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Vellimana AK, Milner E, Azad TD, Harries MD, Zhou ML, Gidday JM, et al. Endothelial nitric oxide synthase mediates endogenous protection against subarachnoid hemorrhage-induced cerebral vasospasm. Stroke. 2011;42(3):776–82.

    Article  CAS  PubMed  Google Scholar 

  47. Pisapia JM, Xu X, Kelly J, Yeung J, Carrion G, Tong H, et al. Microthrombosis after experimental subarachnoid hemorrhage: time course and effect of red blood cell-bound thrombin-activated pro-urokinase and clazosentan. Exp Neurol. 2012;233(1):357–63.

    Article  CAS  PubMed  Google Scholar 

  48. Fujimoto M, Shiba M, Kawakita F, Liu L, Shimojo N, Imanaka-Yoshida K, et al. Deficiency of tenascin-C and attenuation of blood-brain barrier disruption following experimental subarachnoid hemorrhage in mice. J Neurosurg. 2016;124(6):1693–702.

    Article  CAS  PubMed  Google Scholar 

  49. Muroi C, Kashiwagi Y, Rokugawa T, Tonomura M, Obata A, Nevzati E, et al. Evaluation of a filament perforation model for mouse subarachnoid hemorrhage using 7.0 Tesla MRI. J Clin Neurosci. 2016;28:141–7.

    Article  PubMed  Google Scholar 

  50. Provencio JJ, Swank V, Lu H, Brunet S, Baltan S, Khapre RV, et al. Neutrophil depletion after subarachnoid hemorrhage improves memory via NMDA receptors. Brain Behav Immun. 2016;54:233–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Solomon RA, McCormack BM, Lovitz RN, Swift DM, Hegemann MT. Elevation of brain norepinephrine concentration after experimental subarachnoid hemorrhage. Neurosurgery. 1986;19(3):363–6.

    Article  CAS  PubMed  Google Scholar 

  52. Swift DM, Solomon RA. Subarachnoid hemorrhage fails to produce vasculopathy or chronic blood flow changes in rats. Stroke. 1988;19(7):878–82.

    Article  CAS  PubMed  Google Scholar 

  53. Jackowski A, Crockard A, Burnstock G, Russell RR, Kristek F. The time course of intracranial pathophysiological changes following experimental subarachnoid haemorrhage in the rat. J Cereb Blood Flow Metab. 1990;10(6):835–49.

    Article  CAS  PubMed  Google Scholar 

  54. Ram Z, Sadeh M, Shacked I, Sahar A, Hadani M. Magnesium sulfate reverses experimental delayed cerebral vasospasm after subarachnoid hemorrhage in rats. Stroke. 1991;22(7):922–7.

    Article  CAS  PubMed  Google Scholar 

  55. Germano A, Imperatore C, d’Avella D, Costa G, Tomasello F. Antivasospastic and brain-protective effects of a hydroxyl radical scavenger (AVS) after experimental subarachnoid hemorrhage. J Neurosurg. 1998;88(6):1075–81.

    Article  CAS  PubMed  Google Scholar 

  56. Tekkok IH, Tekkok S, Ozcan OE, Erbengi T, Erbengi A. Preventive effect of intracisternal heparin for proliferative angiopathy after experimental subarachnoid haemorrhage in rats. Acta Neurochir. 1994;127(1–2):112–7.

    Article  CAS  PubMed  Google Scholar 

  57. Suzuki H, Kanamaru K, Tsunoda H, Inada H, Kuroki M, Sun H, et al. Heme oxygenase-1 gene induction as an intrinsic regulation against delayed cerebral vasospasm in rats. J Clin Investig. 1999;104(1):59–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ryba MS, Gordon-Krajcer W, Walski M, Chalimoniuk M, Chrapusta SJ. Hydroxylamine attenuates the effects of simulated subarachnoid hemorrhage in the rat brain and improves neurological outcome. Brain Res. 1999;850(1–2):225–33.

    Article  CAS  PubMed  Google Scholar 

  59. Germano A, d’Avella D, Imperatore C, Caruso G, Tomasello F. Time-course of blood-brain barrier permeability changes after experimental subarachnoid haemorrhage. Acta Neurochir. 2000;142(5):575–80 (discussion 580–1).

    Article  CAS  PubMed  Google Scholar 

  60. Yamamoto S, Teng W, Nishizawa S, Kakiuchi T, Tsukada H. Improvement in cerebral blood flow and metabolism following subarachnoid hemorrhage in response to prophylactic administration of the hydroxyl radical scavenger, AVS, (±)-N, N’-propylenedinicotinamide: a positron emission tomography study in rats. J Neurosurg. 2000;92(6):1009–15.

    Article  CAS  PubMed  Google Scholar 

  61. Aladag MA, Turkoz Y, Sahna E, Parlakpinar H, Gul M. The attenuation of vasospasm by using a sod mimetic after experimental subarachnoidal haemorrhage in rats. Acta Neurochir. 2003;145(8):673–7.

    Article  CAS  PubMed  Google Scholar 

  62. Yilmaz C, Cansever T, Kircelli A, Isiksacan Ozen O, Aydemir F, Akar A, et al. The effects of proanthocyanidins on vasospasm after experimental subarachnoid hemorrhage in rats. Turk Neurosurg. 2015;28(4):667–74.

    Google Scholar 

  63. Pappas AC, Koide M, Wellman GC. Astrocyte Ca2+ signaling drives inversion of neurovascular coupling after subarachnoid hemorrhage. J Neurosci. 2015;35(39):13375–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Sun Y, Shen Q, Watts LT, Muir ER, Huang S, Yang GY, et al. Multimodal MRI characterization of experimental subarachnoid hemorrhage. Neuroscience. 2016;316:53–62.

    Article  CAS  PubMed  Google Scholar 

  65. Konczalla J, Wanderer S, Mrosek J, Gueresir E, Schuss P, Platz J, et al. Levosimendan, a new therapeutic approach to prevent delayed cerebral vasospasm after subarachnoid hemorrhage? Acta Neurochir. 2016;158(11):2075–83.

    Article  PubMed  Google Scholar 

  66. Wang Z, Chen G, Zhu WW, Bian JY, Shen XO, Zhou D. Influence of simvastatin on microthrombosis in the brain after subarachnoid hemorrhage in rats: a preliminary study. Ann Clin Lab Sci. 2010;40(1):32–42.

    PubMed  Google Scholar 

  67. Larsen CC, Povlsen GK, Rasmussen MN, Edvinsson L. Improvement in neurological outcome and abolition of cerebrovascular endothelin B and 5-hydroxytryptamine 1B receptor upregulation through mitogen-activated protein kinase kinase 1/2 inhibition after subarachnoid hemorrhage in rats. J Neurosurg. 2011;114(4):1143–53.

    Article  CAS  PubMed  Google Scholar 

  68. Maddahi A, Povlsen GK, Edvinsson L. Regulation of enhanced cerebrovascular expression of proinflammatory mediators in experimental subarachnoid hemorrhage via the mitogen-activated protein kinase kinase/extracellular signal-regulated kinase pathway. J Neuroinflammation. 2012;9:274.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Povlsen GK, Johansson SE, Larsen CC, Samraj AK, Edvinsson L. Early events triggering delayed vasoconstrictor receptor upregulation and cerebral ischemia after subarachnoid hemorrhage. BMC Neurosci. 2013;14:34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Zhang XS, Zhang X, Zhou ML, Zhou XM, Li N, Li W, et al. Amelioration of oxidative stress and protection against early brain injury by astaxanthin after experimental subarachnoid hemorrhage. J Neurosurg. 2014;121(1):42–54.

    Article  CAS  PubMed  Google Scholar 

  71. Muller AH, Edwards AVG, Larsen MR, Nielsen J, Warfvinge K, Povlsen GK, et al. Proteomic expression changes in large cerebral arteries after experimental subarachnoid hemorrhage in rat are regulated by the MEK-ERK1/2 pathway. J Mol Neurosci. 2017;62(3–4):380–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Matz PG, Sundaresan S, Sharp FR, Weinstein PR. Induction of HSP70 in rat brain following subarachnoid hemorrhage produced by endovascular perforation. J Neurosurg. 1996;85(1):138–45.

    Article  CAS  PubMed  Google Scholar 

  73. Sun BL, Xia ZL, Yang MF, Qiu PM. Effects of Ginkgo biloba extract on somatosensory evoked potential, nitric oxide levels in serum and brain tissue in rats with cerebral vasospasm after subarachnoid hemorrhage. Clin Hemorheol Microcirc. 2000;23(2–4):139–44.

    CAS  PubMed  Google Scholar 

  74. Sun BL, Zhang SM, Xia ZL, Yang MF, Yuan H, Zhang J, et al. The effects of nimodipine on regional cerebral blood flow, brain water and electrolyte contents in rats with subarachnoid hemorrhage. Clin Hemorheol Microcirc. 2003;29(3–4):337–44.

    CAS  PubMed  Google Scholar 

  75. Yang MF, Sun BL, Xia ZL, Zhu LZ, Qiu PM, Zhang SM. Alleviation of brain edema by l-arginine following experimental subarachnoid hemorrhage in a rat model. Clin Hemorheol Microcirc. 2003;29(3–4):437–43.

    CAS  PubMed  Google Scholar 

  76. Sehba FA, Mostafa G, Knopman J, Friedrich V Jr, Bederson JB. Acute alterations in microvascular basal lamina after subarachnoid hemorrhage. J Neurosurg. 2004;101(4):633–40.

    Article  PubMed  Google Scholar 

  77. Bendel O, Prunell G, Stenqvist A, Mathiesen T, Holmin S, Svendgaard NA, et al. Experimental subarachnoid hemorrhage induces changes in the levels of hippocampal NMDA receptor subunit mRNA. Brain Res Mol Brain Res. 2005;137(1–2):119–25.

    Article  CAS  PubMed  Google Scholar 

  78. Torok E, Klopotowski M, Trabold R, Thal SC, Plesnila N, Scholler K. Mild hypothermia (33 degrees C) reduces intracranial hypertension and improves functional outcome after subarachnoid hemorrhage in rats. Neurosurgery. 2009;65(2):352–9 (discussion 359).

    Article  PubMed  Google Scholar 

  79. Suzuki H, Ayer R, Sugawara T, Chen W, Sozen T, Hasegawa Y, et al. Role of osteopontin in early brain injury after subarachnoid hemorrhage in rats. Acta Neurochir Suppl. 2011;110(Pt 1):75–9.

    PubMed  Google Scholar 

  80. Westermaier T, Jauss A, Eriskat J, Kunze E. Roosen K. The temporal profile of cerebral blood flow and tissue metabolites indicates sustained metabolic depression after experimental subarachnoid hemorrhage in rats. Neurosurgery. 2011;68(1):223–9 (discussion 229–30).

    Article  PubMed  Google Scholar 

  81. Li Q, Chen Y, Zhang X, Zuo S, Ge H, Chen Y, et al. Scutellarin attenuates vasospasm through the Erk5-KLF2-eNOS pathway after subarachnoid hemorrhage in rats. J Clin Neurosci. 2016;34:264–70.

    Article  CAS  PubMed  Google Scholar 

  82. Thomas C, Vercouillie J, Domene A, Tauber C, Kassiou M, Guilloteau D et al. Detection of neuroinflammation in a rat model of subarachnoid hemorrhage using [18F]DPA-714 PET imaging. Mol Imaging 2016;15:1-8.

    Article  CAS  Google Scholar 

  83. Wang L, Li M, Xie Y, Xu L, Ye R, Liu X. Preclinical efficacy of human Albumin in subarachnoid hemorrhage. Neuroscience. 2017;344:255–64.

    Article  CAS  PubMed  Google Scholar 

  84. Acikgoz B, Ozgen T, Ozdogan F, Sungur A, Tekkok IH. Angiotensin II receptor content within the subfornical organ and organum vasculosum lamina terminalis increases after experimental subarachnoid haemorrhage in rats. Acta Neurochir. 1996;138(4):460–5.

    Article  CAS  PubMed  Google Scholar 

  85. Alkan T, Tureyen K, Ulutas M, Kahveci N, Goren B, Korfali E, et al. Acute and delayed vasoconstriction after subarachnoid hemorrhage: local cerebral blood flow, histopathology, and morphology in the rat basilar artery. Arch Physiol Biochem. 2001;109(2):145–53.

    Article  CAS  PubMed  Google Scholar 

  86. Vollmer DG, Kassell NF, Hongo K, Ogawa H, Tsukahara T. Effect of the nonglucocorticoid 21-aminosteroid U74006F experimental cerebral vasospasm. Surg Neurol. 1989;31(3):190–4.

    Article  CAS  PubMed  Google Scholar 

  87. Nelson RJ, Perry S, Burns AC, Roberts J, Pickard JD. The effects of hyponatraemia and subarachnoid haemorrhage on the cerebral vasomotor responses of the rabbit. J Cereb Blood Flow Metab. 1991;11(4):661–6.

    Article  CAS  PubMed  Google Scholar 

  88. Ryba M, Grieb P, Walski M, Sawicki J, Pastuszko M. 2-Chloro-2′ deoxyadenosine prevents angiopathic changes in cerebral arteries in experimental SAH in rabbits. Acta Neurochir. 1993;122(1–2):118–21.

    Article  CAS  PubMed  Google Scholar 

  89. Imaizumi S, Shimizu H, Ahmad I, Kaminuma T, Tajima M, Yoshimoto T. Effect of calcitonin gene-related peptide on delayed cerebral vasospasm after experimental subarachnoid hemorrhage in rabbits. Surg Neurol. 1996;46(3):263–70 (discussion 270–1).

    Article  CAS  PubMed  Google Scholar 

  90. Ahmad I, Imaizumi S, Shimizu H, Kaminuma T, Ochiai N, Tajima M, et al. Development of calcitonin gene-related peptide slow-release tablet implanted in CSF space for prevention of cerebral vasospasm after experimental subarachnoid haemorrhage. Acta Neurochir. 1996;138(10):1230–40.

    Article  CAS  PubMed  Google Scholar 

  91. Caner HH, Kwan AL, Arthur A, Jeng AY, Lappe RW, Kassell NF, et al. Systemic administration of an inhibitor of endothelin-converting enzyme for attenuation of cerebral vasospasm following experimental subarachnoid hemorrhage. J Neurosurg. 1996;85(5):917–22.

    Article  CAS  PubMed  Google Scholar 

  92. Zuccarello M, Soattin GB, Lewis AI, Breu V, Hallak H, Rapoport RM. Prevention of subarachnoid hemorrhage-induced cerebral vasospasm by oral administration of endothelin receptor antagonists. J Neurosurg. 1996;84(3):503–7.

    Article  CAS  PubMed  Google Scholar 

  93. Kwan AL, Bavbek M, Jeng AY, Maniara W, Toyoda T, Lappe RW, et al. Prevention and reversal of cerebral vasospasm by an endothelin-converting enzyme inhibitor, CGS 26303, in an experimental model of subarachnoid hemorrhage. J Neurosurg. 1997;87(2):281–6.

    Article  CAS  PubMed  Google Scholar 

  94. Kaminuma T, Shimizu H, Ahmad I, Ochiai N, Ehama R, Ohnuma M, et al. Prevention of cerebral vasospasm by vasodilatory peptide maxadilan following subarachnoid hemorrhage in rabbits. J Control Release. 1998;52(1–2):71–80.

    Article  CAS  PubMed  Google Scholar 

  95. Ishiguro M, Wellman TL, Honda A, Russell SR, Tranmer BI, Wellman GC. Emergence of a R-type Ca2+ channel (CaV 2.3) contributes to cerebral artery constriction after subarachnoid hemorrhage. Circ Res. 2005;96(4):419–26.

    Article  CAS  PubMed  Google Scholar 

  96. Miller CA, Lombard FW, Wu CT, Hubbard CJ, Silbajoris L, Borel CO, et al. Role of vascular mitogens in subarachnoid hemorrhage-associated cerebral vasculopathy. Neurocrit Care. 2006;5(3):215–21.

    Article  PubMed  Google Scholar 

  97. Zheng R, Qin L, Li S, Xu K, Geng H. CT perfusion-derived mean transit time of cortical brain has a negative correlation with the plasma level of Nitric Oxide after subarachnoid hemorrhage. Acta Neurochir. 2014;156(3):527–33.

    Article  PubMed  Google Scholar 

  98. Egemen N, Sanlidilek U, Zorlutuna A, Baskaya M, Bilgic S, Caglar S, et al. Transclival approach to rabbit basilar artery for experimental induction of chronic vasospasm. Acta Neurochir. 1992;115(3–4):123–6.

    Article  CAS  PubMed  Google Scholar 

  99. Morooka H. Cerebral aterial spasm. I. Adrenergic mechanism in experimental cerebral vasospasm. Acta Med Okayama. 1978;32(1):23–37.

    CAS  PubMed  Google Scholar 

  100. Gavras H, Andrews P, Papadakis N. Reversal of experimental delayed cerebral vasospasm by angiotensin-converting enzyme inhibition. J Neurosurg. 1981;55(6):884–8.

    Article  CAS  PubMed  Google Scholar 

  101. Varsos VG, Liszczak TM, Han DH, Kistler JP, Vielma J, Black PM, et al. Delayed cerebral vasospasm is not reversible by aminophylline, nifedipine, or papaverine in a “two-hemorrhage” canine model. J Neurosurg. 1983;58(1):11–7.

    Article  CAS  PubMed  Google Scholar 

  102. Alexander E 3rd, Black PM, Liszczak TM, Zervas NT. Delayed CSF lavage for arteriographic and morphological vasospasm after experimental SAH. J Neurosurg. 1985;63(6):949–58.

    Article  PubMed  Google Scholar 

  103. Takayasu M, Suzuki Y, Shibuya M, Asano T, Kanamori M, Okada T, et al. The effects of HA compound calcium antagonists on delayed cerebral vasospasm in dogs. J Neurosurg. 1986;65(1):80–5.

    Article  CAS  PubMed  Google Scholar 

  104. Uemura Y, Okamoto S, Handa Y, Handa H. Disturbance in the intramural circulation of the major cerebro-pial arteries after experimental subarachnoid haemorrhage. Acta Neurochir. 1987;89(1–2):71–6.

    Article  CAS  PubMed  Google Scholar 

  105. Watanabe T, Asano T, Shimizu T, Seyama Y, Takakura K. Participation of lipoxygenase products from arachidonic acid in the pathogenesis of cerebral vasospasm. J Neurochem. 1988;50(4):1145–50.

    Article  CAS  PubMed  Google Scholar 

  106. Shibuya M, Suzuki Y, Takayasu M, Asano T, Harada T, Ikegaki I, et al. The effects of an intracellular calcium antagonist HA 1077 on delayed cerebral vasospasm in dogs. Acta Neurochir. 1988;90(1–2):53–9.

    Article  CAS  PubMed  Google Scholar 

  107. Seifert V, Eisert WG, Stolke D, Goetz C. Efficacy of single intracisternal bolus injection of recombinant tissue plasminogen activator to prevent delayed cerebral vasospasm after experimental subarachnoid hemorrhage. Neurosurgery. 1989;25(4):590–8.

    Article  CAS  PubMed  Google Scholar 

  108. Yokota M, Tani E, Fukumori T, Maeda Y, Yamaura I. Effects of subarachnoid hemorrhage and a thromboxane A2 synthetase inhibitor on intracranial prostaglandins. Surg Neurol. 1991;35(5):345–9.

    Article  CAS  PubMed  Google Scholar 

  109. Diringer MN, Heffez DS, Monsein L, Kirsch JR, Hanley DF, Traystman RJ. Cerebrovascular CO2 reactivity during delayed vasospasm in a canine model of subarachnoid hemorrhage. Stroke. 1991;22(3):367–72.

    Article  CAS  PubMed  Google Scholar 

  110. Matsumura Y, Ikegawa R, Suzuki Y, Takaoka M, Uchida T, Kido H, et al. Phosphoramidon prevents cerebral vasospasm following subarachnoid hemorrhage in dogs: the relationship to endothelin-1 levels in the cerebrospinal fluid. Life Sci. 1991;49(11):841–8.

    Article  CAS  PubMed  Google Scholar 

  111. Kobayashi H, Ide H, Handa Y, Aradachi H, Arai Y, Kubota T. Effect of leukotriene antagonist on experimental delayed cerebral vasospasm. Neurosurgery. 1992;31(3):550–5 (discussion 555–6).

    Article  CAS  PubMed  Google Scholar 

  112. Itoh S, Sasaki T, Ide K, Ishikawa K, Nishikibe M, Yano M. A novel endothelin ETA receptor antagonist, BQ-485, and its preventive effect on experimental cerebral vasospasm in dogs. Biochem Biophys Res Commun. 1993;195(2):969–75.

    Article  CAS  PubMed  Google Scholar 

  113. Willette RN, Zhang H, Mitchell MP, Sauermelch CF, Ohlstein EH, Sulpizio AC. Nonpeptide endothelin antagonist. Cerebrovascular characterization and effects on delayed cerebral vasospasm. Stroke. 1994;25(12):2450–5 (discussion 2456).

    Article  CAS  PubMed  Google Scholar 

  114. Bulter WE, Peterson JW, Zervas NT, Morgan KG. Intracellular calcium, myosin light chain phosphorylation, and contractile force in experimental cerebral vasospasm. Neurosurgery. 1996;38(4):781–7 (discussion 787–8).

    Article  CAS  PubMed  Google Scholar 

  115. Khajavi K, Ayzman I, Shearer D, Jones SC, Levy JH, Prayson RA, et al. Prevention of chronic cerebral vasospasm in dogs with milrinone. Neurosurgery. 1997;40(2):354–62 (discussion 362–3).

    Article  CAS  PubMed  Google Scholar 

  116. Ohkuma H, Itoh K, Shibata S, Suzuki S. Morphological changes of intraparenchymal arterioles after experimental subarachnoid hemorrhage in dogs. Neurosurgery. 1997;41(1):230–5 (discussion 235–6).

    Article  CAS  PubMed  Google Scholar 

  117. Roux S, Breu V, Giller T, Neidhart W, Ramuz H, Coassolo P, et al. Ro 61-1790, a new hydrosoluble endothelin antagonist: general pharmacology and effects on experimental cerebral vasospasm. J Pharmacol Exp Ther. 1997;283(3):1110–8.

    CAS  PubMed  Google Scholar 

  118. Watanabe T, Nishiyama M, Hori T, Asano T, Shimizu T, Masayasu H. Ebselen (DR3305) ameliorates delayed cerebral vasospasm in a canine two-hemorrhage model. Neurol Res. 1997;19(5):563–5.

    Article  CAS  PubMed  Google Scholar 

  119. Kita T, Kubo K, Hiramatsu K, Sakaki T, Yonetani Y, Sato S, et al. Profiles of an intravenously available endothelin A-receptor antagonist, S-0139, for preventing cerebral vasospasm in a canine two-hemorrhage model. Life Sci. 1998;63(4):305–15.

    Article  CAS  PubMed  Google Scholar 

  120. Wolf EW, Banerjee A, Soble-Smith J, Dohan FC Jr, White RP, Robertson JT. Reversal of cerebral vasospasm using an intrathecally administered nitric oxide donor. J Neurosurg. 1998;89(2):279–88.

    Article  CAS  PubMed  Google Scholar 

  121. Onoue H, Katusic ZS. The effect of subarachnoid hemorrhage on mechanisms of vasodilation mediated by cyclic adenosine monophosphate. J Neurosurg. 1998;89(1):111–7.

    Article  CAS  PubMed  Google Scholar 

  122. Cook DJ, Kan S, Ai J, Kasuya H, Macdonald RL. Cisternal sustained release dihydropyridines for subarachnoid hemorrhage. Curr Neurovasc Res. 2012;9(2):139–48.

    Article  CAS  PubMed  Google Scholar 

  123. Mori K. Double cisterna magna blood injection model of experimental subarachnoid hemorrhage in dogs. Transl Stroke Res. 2014;5(6):647–52.

    Article  CAS  PubMed  Google Scholar 

  124. Hanggi D, Etminan N, Steiger HJ, Johnson M, Peet MM, Tice T, et al. A site-specific, sustained-release drug delivery system for aneurysmal subarachnoid hemorrhage. Neurotherapeutics. 2016;13(2):439–49.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Shiokawa K, Kasuya H, Miyajima M, Izawa M, Takakura K. Prophylactic effect of papaverine prolonged-release pellets on cerebral vasospasm in dogs. Neurosurgery. 1998;42(1):109–15 (discussion 115–6).

    Article  CAS  PubMed  Google Scholar 

  126. Zibly Z, Fein L, Sharma M, Assaf Y, Wohl A, Harnof S. A novel swine model of subarachnoid hemorrhage-induced cerebral vasospasm. Neurol India. 2017;65(5):1035–42.

    Article  PubMed  Google Scholar 

  127. Espinosa F, Weir B, Overton T, Castor W, Grace M, Boisvert D. A randomized placebo-controlled double-blind trial of nimodipine after SAH in monkeys. Part 1: clinical and radiological findings. J Neurosurg. 1984;60(6):1167–75.

    Article  CAS  PubMed  Google Scholar 

  128. Nosko M, Weir B, Krueger C, Cook D, Norris S, Overton T, et al. Nimodipine and chronic vasospasm in monkeys: part 1. Clinical and radiological findings. Neurosurgery. 1985;16(2):129–36.

    Article  CAS  PubMed  Google Scholar 

  129. Nosko M, Weir BK, Lunt A, Grace M, Allen P, Mielke B. Effect of clot removal at 24 hours on chronic vasospasm after SAH in the primate model. J Neurosurg. 1987;66(3):416–22.

    Article  CAS  PubMed  Google Scholar 

  130. Findlay JM, Weir BK, Steinke D, Tanabe T, Gordon P, Grace M. Effect of intrathecal thrombolytic therapy on subarachnoid clot and chronic vasospasm in a primate model of SAH. J Neurosurg. 1988;69(5):723–35.

    Article  CAS  PubMed  Google Scholar 

  131. Findlay JM, Weir BK, Gordon P, Grace M, Baughman R. Safety and efficacy of intrathecal thrombolytic therapy in a primate model of cerebral vasospasm. Neurosurgery. 1989;24(4):491–8.

    Article  CAS  PubMed  Google Scholar 

  132. Findlay JM, Weir BK, Kanamaru K, Grace M, Baughman R. The effect of timing of intrathecal fibrinolytic therapy on cerebral vasospasm in a primate model of subarachnoid hemorrhage. Neurosurgery. 1990;26(2):201–6.

    Article  CAS  PubMed  Google Scholar 

  133. Pluta RM, Deka-Starosta A, Zauner A, Morgan JK, Muraszko KM, Oldfield EH. Neuropeptide Y in the primate model of subarachnoid hemorrhage. J Neurosurg. 1992;77(3):417–23.

    Article  CAS  PubMed  Google Scholar 

  134. Handa Y, Kubota T, Tsuchida A, Kaneko M, Caner H, Kobayashi H, et al. Effect of systemic hypotension on cerebral energy metabolism during chronic cerebral vasospasm in primates. J Neurosurg. 1993;78(1):112–9.

    Article  CAS  PubMed  Google Scholar 

  135. Hariton GB, Findlay JM, Weir BK, Kasuya H, Grace MG, Mielke BW. Comparison of intrathecal administration of urokinase and tissue plasminogen activator on subarachnoid clot and chronic vasospasm in a primate model. Neurosurgery. 1993;33(4):691–6 (discussion 696–7).

    CAS  PubMed  Google Scholar 

  136. Inoue T, Shimizu H, Kaminuma T, Tajima M, Watabe K, Yoshimoto T. Prevention of cerebral vasospasm by calcitonin gene-related peptide slow-release tablet after subarachnoid hemorrhage in monkeys. Neurosurgery. 1996;39(5):984–90.

    CAS  PubMed  Google Scholar 

  137. Pluta RM, Boock RJ, Afshar JK, Clouse K, Bacic M, Ehrenreich H, et al. Source and cause of endothelin-1 release into cerebrospinal fluid after subarachnoid hemorrhage. J Neurosurg. 1997;87(2):287–93.

    Article  CAS  PubMed  Google Scholar 

  138. Horky LL, Pluta RM, Boock RJ, Oldfield EH. Role of ferrous iron chelator 2,2′-dipyridyl in preventing delayed vasospasm in a primate model of subarachnoid hemorrhage. J Neurosurg. 1998;88(2):298–303.

    Article  CAS  PubMed  Google Scholar 

  139. Pluta RM, Afshar JK, Boock RJ, Oldfield EH. Temporal changes in perivascular concentrations of oxyhemoglobin, deoxyhemoglobin, and methemoglobin after subarachnoid hemorrhage. J Neurosurg. 1998;88(3):557–61.

    Article  CAS  PubMed  Google Scholar 

  140. Pluta RM, Dejam A, Grimes G, Gladwin MT, Oldfield EH. Nitrite infusions to prevent delayed cerebral vasospasm in a primate model of subarachnoid hemorrhage. JAMA. 2005;293(12):1477–84.

    Article  CAS  PubMed  Google Scholar 

  141. Pluta RM, Butman JA, Schatlo B, Johnson DL, Oldfield EH. Subarachnoid hemorrhage and the distribution of drugs delivered into the cerebrospinal fluid. Laboratory investigation. J Neurosurg. 2009;111(5):1001–7.

    Article  PubMed  PubMed Central  Google Scholar 

  142. Norwood CW, Poole J, Moody D. Treatment of experiment delayed cerebral arterial spasm with a beta2-adrenergic stimulator and a phosphodiesterase inhibitor. J Neurosurg. 1976;45(5):491–7.

    Article  CAS  PubMed  Google Scholar 

  143. Boisvert DP, Pickard JD, Graham DI, Fitch W. Delayed effects of subarachnoid haemorrhage on cerebral metabolism and the cerebrovascular response to hypercapnia in the primate. J Neurol Neurosurg Psychiatry. 1979;42(10):892–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Espinosa F, Weir B, Boisvert D, Overton T, Castor W. Chronic cerebral vasospasm after large subarachnoid hemorrhage in monkeys. J Neurosurg. 1982;57(2):224–32.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: Supported by Grants from the Japanese Heart Foundation/Bayer Yakuhin Research Grant Abroad, NIH (P01NS055104, R01NS102969, R25NS065743, and KL2TR002542), the Foundation Leducq, the Heitman Foundation, the Ellison Foundation, the Brain Aneurysm Foundation’s Timothy P. Susco and Andrew David Heitman Foundation Chairs of Research, the Aneurysm and AVM Foundation, and the American Heart Association (18POST34030369).

Author information

Authors and Affiliations

Authors

Contributions

FO collected, analyzed the data, and wrote manuscript; DYC analyzed the data and wrote manuscript; MS edited the manuscript; CA conceived the study, analyzed the data, and wrote the manuscript.

Corresponding author

Correspondence to Fumiaki Oka.

Ethics declarations

Conflict of interest

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oka, F., Chung, D.Y., Suzuki, M. et al. Delayed Cerebral Ischemia After Subarachnoid Hemorrhage: Experimental-Clinical Disconnect and the Unmet Need. Neurocrit Care 32, 238–251 (2020). https://doi.org/10.1007/s12028-018-0650-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12028-018-0650-5

Keywords

Navigation