Skip to main content

Advertisement

Log in

Cerebral Edema After Cardiopulmonary Resuscitation: A Therapeutic Target Following Cardiac Arrest?

  • Current Concepts
  • Published:
Neurocritical Care Aims and scope Submit manuscript

Abstract

We sought to review the role that cerebral edema plays in neurologic outcome following cardiac arrest, to understand whether cerebral edema might be an appropriate therapeutic target for neuroprotection in patients who survive cardiopulmonary resuscitation. Articles indexed in PubMed and written in English. Following cardiac arrest, cerebral edema is a cardinal feature of brain injury and is a powerful prognosticator of neurologic outcome. Like other conditions characterized by cerebral ischemia/reperfusion, neuroprotection after cardiac arrest has proven to be difficult to achieve. Neuroprotection after cardiac arrest generally has focused on protecting neurons, not the microvascular endothelium or blood–brain barrier. Limited preclinical data suggest that strategies to reduce cerebral edema may improve neurologic outcome. Ongoing research will be necessary to determine whether targeting cerebral edema will improve patient outcomes after cardiac arrest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Benjamin EJ, Blaha MJ, Chiuve SE, et al. Heart disease and stroke statistics-2017 update: a report from the American Heart Association. Circulation. 2017;135:e146–603.

    PubMed  PubMed Central  Google Scholar 

  2. Schenone AL, Cohen A, Patarroyo G, et al. Therapeutic hypothermia after cardiac arrest: a systematic review/meta-analysis exploring the impact of expanded criteria and targeted temperature. Resuscitation. 2016;108:102–10.

    Article  PubMed  Google Scholar 

  3. Patel JK, Parikh PB. Association between therapeutic hypothermia and long-term quality of life in survivors of cardiac arrest: a systematic review. Resuscitation. 2016;103:54–9.

    Article  PubMed  Google Scholar 

  4. Arrich J, Holzer M, Havel C, Mullner M, Herkner H. Hypothermia for neuroprotection in adults after cardiopulmonary resuscitation. Cochrane Database Syst Rev. 2016;2:CD004128.

    PubMed  Google Scholar 

  5. Scales DC, Golan E, Pinto R, et al. Improving appropriate neurologic prognostication after cardiac arrest. A stepped wedge cluster randomized controlled trial. Am J Respir Crit Care Med. 2016;194:1083–91.

    Article  PubMed  Google Scholar 

  6. Sandroni C, D’Arrigo S, Callaway CW, et al. The rate of brain death and organ donation in patients resuscitated from cardiac arrest: a systematic review and meta-analysis. Intensive Care Med. 2016;42:1661–71.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Roine RO, Kajaste S, Kaste M. Neuropsychological sequelae of cardiac arrest. JAMA. 1993;269:237–42.

    Article  PubMed  CAS  Google Scholar 

  8. Madathil RJ, Hira RS, Stoeckl M, Sterz F, Elrod JB, Nichol G. Ischemia reperfusion injury as a modifiable therapeutic target for cardioprotection or neuroprotection in patients undergoing cardiopulmonary resuscitation. Resuscitation. 2016;105:85–91.

    Article  PubMed  Google Scholar 

  9. Takahashi M, Macdonald RL. Vascular aspects of neuroprotection. Neurol Res. 2004;26:862–9.

    Article  PubMed  CAS  Google Scholar 

  10. Huang L, Applegate PM, Gatling JW, Mangus DB, Zhang J, Applegate RL 2nd. A systematic review of neuroprotective strategies after cardiac arrest: from bench to bedside (part II-comprehensive protection). Med gas Res. 2014;4:10.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Simard JM, Sheth KN, Kimberly WT, et al. Glibenclamide in cerebral ischemia and stroke. Neurocrit Care. 2014;20:319–33.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Jiang B, Li L, Chen Q, et al. Role of glibenclamide in brain injury after intracerebral hemorrhage. Transl Stroke Res. 2016;8:183–93.

    Article  PubMed  CAS  Google Scholar 

  13. Donkin JJ, Vink R. Mechanisms of cerebral edema in traumatic brain injury: therapeutic developments. Curr Opin Neurol. 2010;23:293–9.

    Article  PubMed  CAS  Google Scholar 

  14. Claassen J, Carhuapoma JR, Kreiter KT, Du EY, Connolly ES, Mayer SA. Global cerebral edema after subarachnoid hemorrhage: frequency, predictors, and impact on outcome. Stroke. 2002;33:1225–32.

    Article  PubMed  Google Scholar 

  15. Stamatovic SM, Dimitrijevic OB, Keep RF, Andjelkovic AV. Inflammation and brain edema: new insights into the role of chemokines and their receptors. Acta Neurochir Suppl. 2006;96:444–50.

    Article  PubMed  CAS  Google Scholar 

  16. Danton GH, Dietrich WD. Inflammatory mechanisms after ischemia and stroke. J Neuropathol Exp Neurol. 2003;62:127–36.

    Article  PubMed  CAS  Google Scholar 

  17. Fujioka M, Okuchi K, Sakaki T, Hiramatsu K, Miyamoto S, Iwasaki S. Specific changes in human brain following reperfusion after cardiac arrest. Stroke. 1994;25:2091–5.

    Article  PubMed  CAS  Google Scholar 

  18. Kjos BO, Brant-Zawadzki M, Young RG. Early CT findings of global central nervous system hypoperfusion. AJR Am J Roentgenol. 1983;141:1227–32.

    Article  PubMed  CAS  Google Scholar 

  19. Naples R, Ellison E, Brady WJ. Cranial computed tomography in the resuscitated patient with cardiac arrest. Am J Emerg Med. 2009;27:63–7.

    Article  PubMed  Google Scholar 

  20. Langkjaer S, Hassager C, Kjaergaard J, et al. Prognostic value of reduced discrimination and oedema on cerebral computed tomography in a daily clinical cohort of out-of-hospital cardiac arrest patients. Resuscitation. 2015;92:141–7.

    Article  PubMed  Google Scholar 

  21. Torbey MT, Selim M, Knorr J, Bigelow C, Recht L. Quantitative analysis of the loss of distinction between gray and white matter in comatose patients after cardiac arrest. Stroke. 2000;31:2163–7.

    Article  PubMed  CAS  Google Scholar 

  22. Inamasu J, Miyatake S, Suzuki M, et al. Early CT signs in out-of-hospital cardiac arrest survivors: temporal profile and prognostic significance. Resuscitation. 2010;81:534–8.

    Article  PubMed  Google Scholar 

  23. Inamasu J, Miyatake S, Nakatsukasa M, Koh H, Yagami T. Loss of gray–white matter discrimination as an early CT sign of brain ischemia/hypoxia in victims of asphyxial cardiac arrest. Emerg Radiol. 2011;18:295–8.

    Article  PubMed  Google Scholar 

  24. Ryu W, Lee YJ, Park EJ, Jung YS, Min YG. Clinical characteristics of acute brain swelling in patients successfully resuscitated from non-traumatic out-of-hospital cardiac arrest. Korean J Crit Care Med. 2010;25:219–23.

    Article  Google Scholar 

  25. Morimoto Y, Kemmotsu O, Kitami K, Matsubara I, Tedo I. Acute brain swelling after out-of-hospital cardiac arrest: pathogenesis and outcome. Crit Care Med. 1993;21:104–10.

    Article  PubMed  CAS  Google Scholar 

  26. Inamasu J, Nakatsukasa M, Hayashi T, Kato Y, Hirose Y. Early CT signs of hypoxia in patients with subarachnoid hemorrhage presenting with cardiac arrest: early CT signs in SAH patients presenting with CA. Acta Neurochir Suppl. 2013;118:181–4.

    PubMed  Google Scholar 

  27. Nagao K, Nonogi H, Yonemoto N, et al. Duration of prehospital resuscitation efforts after out-of-hospital cardiac arrest. Circulation. 2016;133:1386–96.

    Article  PubMed  Google Scholar 

  28. Yanagawa Y, Un-no Y, Sakamoto T, Okada Y. Cerebral density on CT immediately after a successful resuscitation of cardiopulmonary arrest correlates with outcome. Resuscitation. 2005;64:97–101.

    Article  PubMed  Google Scholar 

  29. Kim SH, Choi SP, Park KN, Youn CS, Oh SH, Choi SM. Early brain computed tomography findings are associated with outcome in patients treated with therapeutic hypothermia after out-of-hospital cardiac arrest. Scand J Trauma Resusc Emerg Med. 2013;21:57.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Nakano S, Iseda T, Kawano H, Yoneyama T, Ikeda T, Wakisaka S. Correlation of early CT signs in the deep middle cerebral artery territories with angiographically confirmed site of arterial occlusion. AJNR Am J Neuroradiol. 2001;22:654–9.

    PubMed  CAS  Google Scholar 

  31. Simard JM, Kent TA, Chen M, Tarasov KV, Gerzanich V. Brain oedema in focal ischaemia: molecular pathophysiology and theoretical implications. Lancet Neurol. 2007;6:258–68.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Stokum JA, Gerzanich V, Simard JM. Molecular pathophysiology of cerebral edema. J Cereb Blood Flow Metab. 2016;36:513–38.

    Article  PubMed  CAS  Google Scholar 

  33. Gutierrez LG, Rovira A, Portela LA, Leite Cda C, Lucato LT. CT and MR in non-neonatal hypoxic-ischemic encephalopathy: radiological findings with pathophysiological correlations. Neuroradiology. 2010;52:949–76.

    Article  PubMed  Google Scholar 

  34. Wijdicks EF, Campeau NG, Miller GM. MR imaging in comatose survivors of cardiac resuscitation. AJNR Am J Neuroradiol. 2001;22:1561–5.

    PubMed  CAS  Google Scholar 

  35. Mlynash M, Campbell DM, Leproust EM, et al. Temporal and spatial profile of brain diffusion-weighted MRI after cardiac arrest. Stroke. 2010;41:1665–72.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Youn CS, Park KN, Kim JY, et al. Repeated diffusion weighted imaging in comatose cardiac arrest patients with therapeutic hypothermia. Resuscitation. 2015;96:1–8.

    Article  PubMed  Google Scholar 

  37. Hirsch KG, Mlynash M, Eyngorn I, et al. Multi-center study of diffusion-weighted imaging in coma after cardiac arrest. Neurocrit Care. 2016;24:82–9.

    Article  PubMed  CAS  Google Scholar 

  38. Choi SP, Park KN, Park HK, et al. Diffusion-weighted magnetic resonance imaging for predicting the clinical outcome of comatose survivors after cardiac arrest: a cohort study. Crit Care. 2010;14:R17.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Wu O, Sorensen AG, Benner T, Singhal AB, Furie KL, Greer DM. Comatose patients with cardiac arrest: predicting clinical outcome with diffusion-weighted MR imaging. Radiology. 2009;252:173–81.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Wijman CA, Mlynash M, Caulfield AF, et al. Prognostic value of brain diffusion-weighted imaging after cardiac arrest. Ann Neurol. 2009;65:394–402.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Cristia C, Ho ML, Levy S, et al. The association between a quantitative computed tomography (CT) measurement of cerebral edema and outcomes in post-cardiac arrest-a validation study. Resuscitation. 2014;85:1348–53.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Metter RB, Rittenberger JC, Guyette FX, Callaway CW. Association between a quantitative CT scan measure of brain edema and outcome after cardiac arrest. Resuscitation. 2011;82:1180–5.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Choi SP, Park HK, Park KN, et al. The density ratio of grey to white matter on computed tomography as an early predictor of vegetative state or death after cardiac arrest. Emerg Med J. 2008;25:666–9.

    Article  PubMed  CAS  Google Scholar 

  44. Lee YH, Oh YT, Ahn HC, et al. The prognostic value of the grey-to-white matter ratio in cardiac arrest patients treated with extracorporeal membrane oxygenation. Resuscitation. 2016;99:50–5.

    Article  PubMed  Google Scholar 

  45. Scheel M, Storm C, Gentsch A, et al. The prognostic value of gray–white-matter ratio in cardiac arrest patients treated with hypothermia. Scand J Trauma Resusc Emerg Med. 2013;21:23.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Lee BK, Jeung KW, Song KH, et al. Prognostic values of gray matter to white matter ratios on early brain computed tomography in adult comatose patients after out-of-hospital cardiac arrest of cardiac etiology. Resuscitation. 2015;96:46–52.

    Article  PubMed  Google Scholar 

  47. Lee BK, Kim WY, Shin J, et al. Prognostic value of gray matter to white matter ratio in hypoxic and non-hypoxic cardiac arrest with non-cardiac etiology. Am J Emerg Med. 2016;34:1583–8.

    Article  PubMed  Google Scholar 

  48. Bergman R, Tjan DH, Adriaanse MW, van Vugt R, van Zanten AR. Unexpected fatal neurological deterioration after successful cardio-pulmonary resuscitation and therapeutic hypothermia. Resuscitation. 2008;76:142–5.

    Article  PubMed  CAS  Google Scholar 

  49. Chelly J, Deye N, Guichard JP, et al. The optic nerve sheath diameter as a useful tool for early prediction of outcome after cardiac arrest: a prospective pilot study. Resuscitation. 2016;103:7–13.

    Article  PubMed  Google Scholar 

  50. Chae MK, Ko E, Lee JH, et al. Better prognostic value with combined optic nerve sheath diameter and grey-to-white matter ratio on initial brain computed tomography in post-cardiac arrest patients. Resuscitation. 2016;104:40–5.

    Article  PubMed  Google Scholar 

  51. Gueugniaud PY, Garcia-Darennes F, Gaussorgues P, Bancalari G, Petit P, Robert D. Prognostic significance of early intracranial and cerebral perfusion pressures in post-cardiac arrest anoxic coma. Intensive Care Med. 1991;17:392–8.

    Article  PubMed  CAS  Google Scholar 

  52. Iida K, Satoh H, Arita K, Nakahara T, Kurisu K, Ohtani M. Delayed hyperemia causing intracranial hypertension after cardiopulmonary resuscitation. Crit Care Med. 1997;25:971–6.

    Article  PubMed  CAS  Google Scholar 

  53. Naito H, Isotani E, Callaway CW, Hagioka S, Morimoto N. Intracranial pressure increases during rewarming period after mild therapeutic hypothermia in postcardiac arrest patients. Ther Hypothermia Temp Manag. 2016;6:189–93.

    Article  PubMed  Google Scholar 

  54. Nordmark J, Rubertsson S, Mortberg E, Nilsson P, Enblad P. Intracerebral monitoring in comatose patients treated with hypothermia after a cardiac arrest. Acta Anaesthesiol Scand. 2009;53:289–98.

    Article  PubMed  CAS  Google Scholar 

  55. Andrews PJ, Sinclair HL, Rodriguez A, et al. Hypothermia for intracranial hypertension after traumatic brain injury. N Engl J Med. 2015;373:2403–12.

    Article  PubMed  CAS  Google Scholar 

  56. Fugate JE, Wijdicks EF, Mandrekar J, et al. Predictors of neurologic outcome in hypothermia after cardiac arrest. Ann Neurol. 2010;68:907–14.

    Article  PubMed  Google Scholar 

  57. Topcuoglu MA, Oguz KK, Buyukserbetci G, Bulut E. Prognostic value of magnetic resonance imaging in post-resuscitation encephalopathy. Intern Med. 2009;48:1635–45.

    Article  PubMed  Google Scholar 

  58. Moseley ME, Cohen Y, Mintorovitch J, et al. Early detection of regional cerebral ischemia in cats: comparison of diffusion- and T2-weighted MRI and spectroscopy. Magn Reson Med. 1990;14:330–46.

    Article  PubMed  CAS  Google Scholar 

  59. Lin SR, Morris TW, Violante MR. Cerebral water content, blood flow and EEG changes after cardiac arrest in the dog. Investig Radiol. 1977;12:325–32.

    Article  CAS  Google Scholar 

  60. Lin SR. The effect of dextran and streptokinase on cerebral function and blood flow after cardiac arrest. An experimental study on the dog. Neuroradiology. 1978;16:340–2.

    Article  PubMed  CAS  Google Scholar 

  61. Melgar MA, Rafols J, Gloss D, Diaz FG. Postischemic reperfusion: ultrastructural blood-brain barrier and hemodynamic correlative changes in an awake model of transient forebrain ischemia. Neurosurgery. 2005;56:571–81.

    Article  PubMed  Google Scholar 

  62. Nolan JP, Neumar RW, Adrie C, et al. Post-cardiac arrest syndrome: epidemiology, pathophysiology, treatment, and prognostication. A scientific statement from the International Liaison Committee on Resuscitation; the American Heart Association Emergency Cardiovascular Care Committee; the Council on Cardiovascular Surgery and Anesthesia; the Council on Cardiopulmonary, Perioperative, and Critical Care; the Council on Clinical Cardiology; the Council on Stroke. Resuscitation. 2008;79:350–79.

    Article  PubMed  Google Scholar 

  63. Ames A 3rd, Wright RL, Kowada M, Thurston JM, Majno G. Cerebral ischemia. II. The no-reflow phenomenon. Am J Pathol. 1968;52:437–53.

    PubMed  PubMed Central  Google Scholar 

  64. Chiang J, Kowada M, Ames A 3rd, Wright RL, Majno G. Cerebral ischemia. III. Vascular changes. Am J Pathol. 1968;52:455–76.

    PubMed  PubMed Central  CAS  Google Scholar 

  65. Dietrich WD, Busto R, Yoshida S, Ginsberg MD. Histopathological and hemodynamic consequences of complete versus incomplete ischemia in the rat. J Cereb Blood Flow Metab. 1987;7:300–8.

    Article  PubMed  CAS  Google Scholar 

  66. Paljarvi L, Rehncrona S, Soderfeldt B, Olsson Y, Kalimo H. Brain lactic acidosis and ischemic cell damage: quantitative ultrastructural changes in capillaries of rat cerebral cortex. Acta Neuropathol. 1983;60:232–40.

    Article  PubMed  CAS  Google Scholar 

  67. Mossakowski MJ, Lossinsky AS, Pluta R, Wisniewski HM. Abnormalities of the blood-brain barrier in global cerebral ischemia in rats due to experimental cardiac arrest. Acta Neurochir Suppl (Wien). 1994;60:274–6.

    CAS  Google Scholar 

  68. Sharma HS, Miclescu A, Wiklund L. Cardiac arrest-induced regional blood-brain barrier breakdown, edema formation and brain pathology: a light and electron microscopic study on a new model for neurodegeneration and neuroprotection in porcine brain. J Neural Transm (Vienna). 2011;118:87–114.

    Article  Google Scholar 

  69. Tress EE, Clark RS, Foley LM, et al. Blood brain barrier is impermeable to solutes and permeable to water after experimental pediatric cardiac arrest. Neurosci Lett. 2014;578:17–21.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Lin SR, Kormano M. Cerebral circulation after cardiac arrest. Microangiographic and protein tracer studies. Stroke. 1977;8:182–8.

    Article  PubMed  CAS  Google Scholar 

  71. Heradstveit BE, Guttormsen AB, Langorgen J, et al. Capillary leakage in post-cardiac arrest survivors during therapeutic hypothermia: a prospective, randomised study. Scand J Trauma Resusc Emerg Med. 2010;18:29.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Ko SB, Choi HA, Parikh G, et al. Real time estimation of brain water content in comatose patients. Ann Neurol. 2012;72:344–50.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Nakayama S, Migliati E, Amiry-Moghaddam M, Ottersen OP, Bhardwaj A. Osmotherapy with hypertonic saline attenuates global cerebral edema following experimental cardiac arrest via perivascular pool of aquaporin-4. Crit Care Med. 2016;44:e702–10.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Miclescu A, Sharma HS, Wiklund L. Crystalloid vs. hypertonic crystalloid-colloid solutions for induction of mild therapeutic hypothermia after experimental cardiac arrest. Resuscitation. 2013;84:256–62.

    Article  PubMed  CAS  Google Scholar 

  75. Kaufmann AM, Cardoso ER. Aggravation of vasogenic cerebral edema by multiple-dose mannitol. J Neurosurg. 1992;77:584–9.

    Article  PubMed  CAS  Google Scholar 

  76. Ding L, Gao X, Yu S, Yang J. Effects of mild and moderate hypothemia therapy on expression of cerebral neuron apoptosis related proteins and glial fiber acidic protein after rat cardio-pulmonary resuscitation. Cell Biochem Biophys. 2014;70:1519–25.

    Article  PubMed  CAS  Google Scholar 

  77. Drabek T, Tisherman SA, Beuke L, et al. Deep hypothermia attenuates microglial proliferation independent of neuronal death after prolonged cardiac arrest in rats. Anesth Analg. 2009;109:914–23.

    Article  PubMed  Google Scholar 

  78. Tang ZR, Li CS, Zhao H, et al. Effects of hypothermia on brain injury assessed by magnetic resonance imaging after cardiopulmonary resuscitation in a porcine model of cardiac arrest. Am J Emerg Med. 2013;31:86–93.

    Article  PubMed  Google Scholar 

  79. Dempsey RJ, Combs DJ, Maley ME, Cowen DE, Roy MW, Donaldson DL. Moderate hypothermia reduces postischemic edema development and leukotriene production. Neurosurgery. 1987;21:177–81.

    Article  PubMed  CAS  Google Scholar 

  80. Kida K, Minamishima S, Wang H, et al. Sodium sulfide prevents water diffusion abnormality in the brain and improves long term outcome after cardiac arrest in mice. Resuscitation. 2012;83:1292–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Xiao F, Pardue S, Arnold TC, et al. Ifenprodil treatment is associated with a down-regulation of brain aquaporin 4 following cardiac arrest in rats. Acta Neurochir Suppl. 2005;95:415–9.

    Article  PubMed  CAS  Google Scholar 

  82. Zhang B, Wei X, Cui X, Kobayashi T, Li W. Effects of heme oxygenase 1 on brain edema and neurologic outcome after cardiopulmonary resuscitation in rats. Anesthesiology. 2008;109:260–8.

    Article  PubMed  CAS  Google Scholar 

  83. Huo TT, Zeng Y, Liu XN, et al. Hydrogen-rich saline improves survival and neurological outcome after cardiac arrest and cardiopulmonary resuscitation in rats. Anesth Analg. 2014;119:368–80.

    Article  PubMed  CAS  Google Scholar 

  84. Agre P. The aquaporin water channels. Proc Am Thorac Soc. 2006;3:5–13.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Manley GT, Fujimura M, Ma T, et al. Aquaporin-4 deletion in mice reduces brain edema after acute water intoxication and ischemic stroke. Nat Med. 2000;6:159–63.

    Article  PubMed  CAS  Google Scholar 

  86. Papadopoulos MC, Manley GT, Krishna S, Verkman AS. Aquaporin-4 facilitates reabsorption of excess fluid in vasogenic brain edema. FASEB J. 2004;18:1291–3.

    Article  PubMed  CAS  Google Scholar 

  87. Akdemir G, Ratelade J, Asavapanumas N, Verkman AS. Neuroprotective effect of aquaporin-4 deficiency in a mouse model of severe global cerebral ischemia produced by transient 4-vessel occlusion. Neurosci Lett. 2014;574:70–5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Xiao F, Arnold TC, Zhang S, et al. Cerebral cortical aquaporin-4 expression in brain edema following cardiac arrest in rats. Acad Emerg Med. 2004;11:1001–7.

    Article  PubMed  Google Scholar 

  89. Nakayama S, Amiry-Moghaddam M, Ottersen OP, Bhardwaj A. Conivaptan, a selective arginine vasopressin V1a and V2 receptor antagonist attenuates global cerebral edema following experimental cardiac arrest via perivascular pool of aquaporin-4. Neurocrit Care. 2016;24:273–82.

    Article  PubMed  CAS  Google Scholar 

  90. Xiao F, Arnold T, Zhang S, et al. Matrix metalloproteinases are not involved in early brain edema formation after cardiac arrest in rats. Acta Neurochir Suppl. 2003;86:75–8.

    PubMed  CAS  Google Scholar 

  91. Geng Y, Li E, Mu Q, et al. Hydrogen sulfide inhalation decreases early blood-brain barrier permeability and brain edema induced by cardiac arrest and resuscitation. J Cereb Blood Flow Metab. 2015;35:494–500.

    Article  PubMed  CAS  Google Scholar 

  92. Simard JM, Woo SK, Schwartzbauer GT, Gerzanich V. Sulfonylurea receptor 1 in central nervous system injury: a focused review. J Cereb Blood Flow Metab. 2012;32:1699–717.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Simard JM, Chen M, Tarasov KV, et al. Newly expressed SUR1-regulated NC(Ca-ATP) channel mediates cerebral edema after ischemic stroke. Nat Med. 2006;12:433–40.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Simard JM, Geng Z, Woo SK, et al. Glibenclamide reduces inflammation, vasogenic edema, and caspase-3 activation after subarachnoid hemorrhage. J Cereb Blood Flow Metab. 2009;29:317–30.

    Article  PubMed  CAS  Google Scholar 

  95. Huang K, Gu Y, Hu Y, et al. Glibenclamide improves survival and neurologic outcome after cardiac arrest in rats. Crit Care Med. 2015;43:e341–9.

    Article  PubMed  CAS  Google Scholar 

  96. Huang K, Wang Z, Gu Y, et al. Glibenclamide is comparable to target temperature management in improving survival and neurological outcome after asphyxial cardiac arrest in rats. J Am Heart Assoc. 2016;5:e003465.

    PubMed  PubMed Central  Google Scholar 

  97. Gao XY, Huang JO, Hu YF, et al. Combination of mild hypothermia with neuroprotectants has greater neuroprotective effects during oxygen-glucose deprivation and reoxygenation-mediated neuronal injury. Sci Rep. 2014;4:7091.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Pompermayer K, Amaral FA, Fagundes CT, et al. Effects of the treatment with glibenclamide, an ATP-sensitive potassium channel blocker, on intestinal ischemia and reperfusion injury. Eur J Pharmacol. 2007;556:215–22.

    Article  PubMed  CAS  Google Scholar 

  99. Pompermayer K, Souza DG, Lara GG, et al. The ATP-sensitive potassium channel blocker glibenclamide prevents renal ischemia/reperfusion injury in rats. Kidney Int. 2005;67:1785–96.

    Article  PubMed  CAS  Google Scholar 

  100. Konczalla J, Seifert V, Beck J, et al. Outcome after Hunt and Hess Grade V subarachnoid hemorrhage: a comparison of pre-coiling era (1980–1995) versus post-ISAT era (2005–2014). J Neurosurg. 2017;24:1–11.

    Google Scholar 

  101. Vahedi K, Hofmeijer J, Juettler E, et al. Early decompressive surgery in malignant infarction of the middle cerebral artery: a pooled analysis of three randomised controlled trials. Lancet Neurol. 2007;6:215–22.

    Article  PubMed  Google Scholar 

  102. Sheth KN, Elm JJ, Molyneaux BJ, et al. Safety and efficacy of intravenous glyburide on brain swelling after large hemispheric infarction (GAMES-RP): a randomised, double-blind, placebo-controlled phase 2 trial. Lancet Neurol. 2016;15:1160–9.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants to JMS from the National Institute of Neurological Disorders and Stroke (NS060801; NS061808) and the National Heart, Lung, and Blood Institute (HL082517). We are grateful to Aaron Wessell, M.D., for his artistry, depicted in Fig. 1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Marc Simard.

Ethics declarations

Conflict of interest

JMS holds a US patent (#7,285,574), “A novel non-selective cation channel in neural cells and methods for treating brain swelling,” and is a member of the scientific advisory board and holds shares in Remedy Pharmaceuticals. WTK and KNS received grants from Remedy Pharmaceuticals.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hayman, E.G., Patel, A.P., Kimberly, W.T. et al. Cerebral Edema After Cardiopulmonary Resuscitation: A Therapeutic Target Following Cardiac Arrest?. Neurocrit Care 28, 276–287 (2018). https://doi.org/10.1007/s12028-017-0474-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12028-017-0474-8

Keywords

Navigation