Skip to main content

Advertisement

Log in

Evaluation of a New Brain Tissue Probe for Intracranial Pressure, Temperature, and Cerebral Blood Flow Monitoring in Patients with Aneurysmal Subarachnoid Hemorrhage

  • Original Article
  • Published:
Neurocritical Care Aims and scope Submit manuscript

Abstract

Objective

To evaluate an intraparenchymal probe for intracranial pressure (ICP) and temperature (TEMP) monitoring as well as determination of cerebral hemodynamics using a near-infrared spectroscopy (NIRS) and indocyanine green (ICG) dye dilution method (NIRS-ICP probe).

Methods

The NIRS-ICP probe was applied after aneurysmal subarachnoid hemorrhage if multimodal monitoring was established due to poor neurological condition. ICP and TEMP values were obtained from ventricular catheters and systemic temperature sensors. Repeated NIRS-ICG measurements (2 injections within 30 min) were performed daily for determination of cerebral blood flow (CBF), cerebral blood volume (CBV), and mean transit time of ICG (mttICG). Secondary neurologic dysfunction was defined as brain tissue oxygen tension <20 mmHg and/or lactate/pyruvate ratio >35 obtained from cerebral probing.

Results

A total of 128 NIRS-ICG measurements were performed in ten patients. The correlation coefficients between ICP and TEMP values obtained with the NIRS-ICP probe and values from routine monitoring were r = 0.72 and r = 0.96, respectively. The mean values were 30.3 ± 13.6 ml/100 g/min for CBF, 3.3 ± 1.2 ml/100 g for CBV, and 6.8 ± 1.6 s for mttICG. The coefficients of variation from repeated NIRS-ICG measurements were 10.9 % for CBF, 11.7 % for CBV, and 3.8 % for mttICG. The sensitivity for detection of secondary neurologic dysfunction was 85 % and the specificity 83 % using a CBF-threshold of 25 ml/100 g/min.

Conclusion

Multimodal monitoring using the NIRS-ICP probe is feasible with high reproducibility of measurement values and the ability to detect secondary neurologic dysfunction. No safety concerns exist for the routine clinical use of the NIRS-ICP probe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Le Roux P, Menon DK, Citerio G, et al. Consensus summary statement of the international multidisciplinary consensus conference on multimodality monitoring in neurocritical care: a statement for healthcare professionals from the Neurocritical Care Society and the European Society of Intensive Care Medicine. Neurocrit Care. 2014;21(Suppl 2):S1–26.

    Article  PubMed  Google Scholar 

  2. Pluta RM, Hansen-Schwartz J, Dreier J, et al. Cerebral vasospasm following subarachnoid hemorrhage: time for a new world of thought. Neurol Res. 2009;31:151–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Macdonald RL, Pluta RM, Zhang JH. Cerebral vasospasm after subarachnoid hemorrhage: the emerging revolution. Nat Clin Pract Neurol. 2007;3:256–63.

    Article  CAS  PubMed  Google Scholar 

  4. Seule M, Muroi C, Sikorski C, Keller E. Monitoring of cerebral hemodynamics and oxygenation to detect delayed ischemic neurological deficit after aneurysmal subarachnoid hemorrhage. Acta Neurochir Suppl. 2013;115:57–61.

    PubMed  Google Scholar 

  5. Oddo M, Bosel J. Monitoring of brain and systemic oxygenation in neurocritical care patients. Neurocrit Care. 2014;21(Suppl 2):S103–20.

    Article  PubMed  Google Scholar 

  6. Hutchinson P, O’Phelan K. International multidisciplinary consensus conference on multimodality monitoring: cerebral metabolism. Neurocrit Care. 2014;21(Suppl 2):S148–58.

    Article  PubMed  Google Scholar 

  7. Vajkoczy P, Roth H, Horn P, et al. Continuous monitoring of regional cerebral blood flow: experimental and clinical validation of a novel thermal diffusion microprobe. J Neurosurg. 2000;93:265–74.

    Article  CAS  PubMed  Google Scholar 

  8. Vajkoczy P, Horn P, Thome C, Munch E, Schmiedek P. Regional cerebral blood flow monitoring in the diagnosis of delayed ischemia following aneurysmal subarachnoid hemorrhage. J Neurosurg. 2003;98:1227–34.

    Article  PubMed  Google Scholar 

  9. Jaeger M, Soehle M, Schuhmann MU, Winkler D, Meixensberger J. Correlation of continuously monitored regional cerebral blood flow and brain tissue oxygen. Acta Neurochir. 2005;147:51–6 ((Wien) discussion 6).

    Article  CAS  PubMed  Google Scholar 

  10. Keller E, Nadler A, Alkadhi H, Kollias SS, Yonekawa Y, Niederer P. Noninvasive measurement of regional cerebral blood flow and regional cerebral blood volume by near-infrared spectroscopy and indocyanine green dye dilution. Neuroimage. 2003;20:828–39.

    Article  PubMed  Google Scholar 

  11. Keller E, Froehlich J, Muroi C, Sikorski C, Muser M. Neuromonitoring in intensive care: a new brain tissue probe for combined monitoring of intracranial pressure (ICP) cerebral blood flow (CBF) and oxygenation. Acta Neurochir Suppl. 2011;110:217–20.

    CAS  PubMed  Google Scholar 

  12. Seule M, Keller E, Unterberg A, Sakowitz O. The hemodynamic response of spreading depolarization observed by near infrared spectroscopy after aneurysmal subarachnoid hemorrhage. Neurocrit Care. 2015;23:108–12.

    Article  CAS  PubMed  Google Scholar 

  13. Keller E, Ishihara H, Nadler A, et al. Evaluation of brain toxicity following near infrared light exposure after indocyanine green dye injection. J Neurosci Methods. 2002;117:23–31.

    Article  PubMed  Google Scholar 

  14. Keller E, Wolf M, Martin M, Yonekawa Y. Estimation of cerebral oxygenation and hemodynamics in cerebral vasospasm using indocyaningreen dye dilution and near infrared spectroscopy: a case report. J Neurosurg Anesthesiol. 2001;13:43–8.

    Article  CAS  PubMed  Google Scholar 

  15. Keller E, Nadler A, Niederer P, Yonekawa Y, Imhof HG. A new subdural probe for combined intracranial pressure (ICP) and cerebral blood flow (CBF) monitoring. Acta Neurochir. 2003;145:1111–5 ((Wien) discussion 5).

    Article  CAS  PubMed  Google Scholar 

  16. Diringer MN, Bleck TP, Claude Hemphill J III, et al. Critical care management of patients following aneurysmal subarachnoid hemorrhage: recommendations from the Neurocritical Care Society’s Multidisciplinary Consensus Conference. Neurocrit Care. 2011;15:211–40.

    Article  PubMed  Google Scholar 

  17. Kapinos G. Redefining secondary injury after subarachnoid hemorrhage in light of multimodal advanced neuroimaging, intracranial and transcranial neuromonitoring: beyond vasospasm. Acta Neurochir Suppl. 2015;120:259–67.

    PubMed  Google Scholar 

  18. Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet. 1986;1:307–10.

    Article  CAS  PubMed  Google Scholar 

  19. Everitt B. The Cambridge dictionary of statistics. Cambridge: Cambridge University Press; 1998.

    Google Scholar 

  20. Gengsheng Q, Hotilovac L. Comparison of non-parametric confidence intervals for the area under the ROC curve of a continuous-scale diagnostic test. Stat Methods Med Res. 2008;17:207–21.

    Article  Google Scholar 

  21. Sahuquillo J, Poca MA, Arribas M, Garnacho A, Rubio E. Interhemispheric supratentorial intracranial pressure gradients in head-injured patients: are they clinically important? J Neurosurg. 1999;90:16–26.

    Article  CAS  PubMed  Google Scholar 

  22. Zhong J, Dujovny M, Park HK, Perez E, Perlin AR, Diaz FG. Advances in ICP monitoring techniques. Neurol Res. 2003;25:339–50.

    Article  PubMed  Google Scholar 

  23. Morgalla MH, Krasznai L, Dietz K, Mettenleiter H, Deininger M, Grote EH. Methods of experimental and clinical assessment of the relative measurement accuracy of an intracranial pressure transducer. Technical note. J Neurosurg. 2001;95:529–32.

    Article  CAS  PubMed  Google Scholar 

  24. Wolf S, Vajkoczy P, Dengler J, Schurer L, Horn P. Drift of the Bowman Hemedex® cerebral blood flow monitor between calibration cycles. Acta Neurochir Suppl. 2012;114:187–90.

    Article  PubMed  Google Scholar 

  25. Kety SS, Schmidt CF. The nitrous oxide method for the quantitative determination of cerebral blood flow in man: theory, procedure and normal values. J Clin Investig. 1948;27:476–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Olesen J, Paulson OB, Lassen NA. Regional cerebral blood flow in man determined by the initial slope of the clearance of intra-arterially injected 133Xe. Stroke. 1971;2:519–40.

    Article  CAS  PubMed  Google Scholar 

  27. Suarez JI, Qureshi AI, Yahia AB, et al. Symptomatic vasospasm diagnosis after subarachnoid hemorrhage: evaluation of transcranial Doppler ultrasound and cerebral angiography as related to compromised vascular distribution. Crit Care Med. 2002;30:1348–55.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors gratefully thank Dr. Rafael Sauter (Clinical Trial Unit, Kantonsspital St. Gallen, Switzerland) for his statistical support.

Funding

M. Seule received grant support by the Stiefel-Zangger Foundation of the University Zurich, Switzerland. The project is supported by the Swiss Innovation Promotion Agency (project no. 13553.1PFFLM-LS), Eurostars (Project No. E!6526 OPTO-BRAIN), as well as by the Velux and von Tobel foundations. NeMoDevices AG (Zurich, Switzerland) provided technical equipment for this clinical trial.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Seule.

Ethics declarations

Disclosure

Prof. E. Keller has a financial interest in this work as founder and shareholder of NeMoDevices AG, Zurich, Switzerland.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seule, M., Sikorski, C., Sakowitz, O. et al. Evaluation of a New Brain Tissue Probe for Intracranial Pressure, Temperature, and Cerebral Blood Flow Monitoring in Patients with Aneurysmal Subarachnoid Hemorrhage. Neurocrit Care 25, 193–200 (2016). https://doi.org/10.1007/s12028-016-0284-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12028-016-0284-4

Keywords

Navigation