Skip to main content

Advertisement

Log in

Assessment of Cerebrovascular Autoregulation Using Regional Cerebral Blood Flow in Surgically Managed Brain Trauma Patients

  • Original Article
  • Published:
Neurocritical Care Aims and scope Submit manuscript

Abstract

Background

Impairment of cerebrovascular autoregulation is a risk factor for ischemic damage following severe brain injury. Autoregulation can be assessed indirectly using intracranial pressure monitoring as a surrogate of cerebral blood volume, but this measure may not be applicable to patients following decompressive craniectomy. Here, we describe assessment of autoregulation using regional cerebral blood flow (rCBF).

Methods

In seven patients with severe brain trauma who underwent neurological surgery, a Hemedex® rCBF probe was placed intraoperatively in peri-lesional tissue. Autoregulation was assessed as a moving Pearson correlation between CPP and rCBF (rCBFx).

Results

Composite data from all patients showed relatively constant perfusion over a wide CPP range (50–90 mmHg) and a U-shaped autoregulation curve with maximal autoregulation (CPPopt) at 55–60 mmHg. All rCBF values fell below the ischemic threshold (<18 ml/100 g/min) when CPPs were <50 mmHg compared with 11 % ischemia when CPPs >50 mmHg (P < 0.05). We examined the percent time during which both autoregulation was intact and rCBF exceeded the ischemic threshold. In the composite data, this variable was maximal in the CPP range of 75–80 mmHg (CPPideal). In individual patients, the range of CPPs with intact autoregulation varied widely. Individual CPPopt values ranged between 60 and 100 mmHg and CPPideal ranged between 65 and 105 mmHg.

Conclusions

Assessment of autoregulation with Hemedex® rCBF monitor is feasible and could be used to guide CPP management strategies to optimize both autoregulation and perfusion. Autoregulatory impairment and CPPopt vary considerably between patients, and the addition of rCBF monitoring could help guide CPP targeting decisions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Werner C, Engelhard K. Pathophysiology of traumatic brain injury. Br J Anaesth. 2007;99:4–9.

    Article  CAS  PubMed  Google Scholar 

  2. Paulson OB, Strandgaard S, Edvinsson L. Cerebral autoregulation. Cerebrovasc Brain Metab Rev. 1990;2:161–92.

    CAS  PubMed  Google Scholar 

  3. Bouma GJ, Muizelaar JP, Bandoh K, Marmarou A. Blood pressure and intracranial pressure-volume dynamics in severe head injury: relationship with cerebral blood flow. J Neurosurg. 1992;77:15–9.

    Article  CAS  PubMed  Google Scholar 

  4. Czosnyka M, Smielewski P, Piechnik S, Steiner LA, Pickard JD. Cerebral autoregulation following head injury. J Neurosurg. 2001;95:756–63.

    Article  CAS  PubMed  Google Scholar 

  5. Zweifel C, Lavinio A, Steiner LA, Radolovich D, Smielewski P, Timofeev I, Hiler M, Balestreri M, Kirkpatrick PJ, Pickard JD, Hutchinson P, Czosnyka M. Continuous monitoring of cerebrovascular pressure reactivity in patients with head injury. Neurosurg Focus. 2008;25:E2.

    Article  PubMed  Google Scholar 

  6. Lam JM, Hsiang JN, Poon WS. Monitoring of autoregulation using laser Doppler flowmetry in patients with head injury. J Neurosurg. 1997;86:438–45.

    Article  CAS  PubMed  Google Scholar 

  7. Jaeger M, Schuhmann MU, Soehle M, Meixensberger J. Continuous assessment of cerebrovascular autoregulation after traumatic brain injury using brain tissue oxygen pressure reactivity. Crit Care Med. 2006;34:1783–8.

    Article  PubMed  Google Scholar 

  8. Reinert M, Andres RH, Fuhrer M, Muller A, Schaller B, Widmer H. Online correlation of spontaneous arterial and intracranial pressure fluctuations in patients with diffuse severe head injury. Neurol Res. 2007;29:455–62.

    Article  PubMed  Google Scholar 

  9. Steiner LA, Czosnyka M, Piechnik SK, Smielewski P, Chatfield D, Menon DK, Pickard JD. Continuous monitoring of cerebrovascular pressure reactivity allows determination of optimal cerebral perfusion pressure in patients with traumatic brain injury. Crit Care Med. 2002;30:733–8.

    Article  PubMed  Google Scholar 

  10. Dewey RC, Pieper HP, Hunt WE. Experimental cerebral hemodynamics. Vasomotor tone, critical closing pressure, and vascular bed resistance. J Neurosurg. 1974;41:597–606.

    Article  CAS  PubMed  Google Scholar 

  11. Czosnyka M, Miller C, (2014) Monitoring of Cerebral Autoregulation. Neurocrit Care.

  12. Steiner LA, Coles JP, Johnston AJ, Chatfield DA, Smielewski P, Fryer TD, Aigbirhio FI, Clark JC, Pickard JD, Menon DK, Czosnyka M. Assessment of cerebrovascular autoregulation in head-injured patients: a validation study. Stroke. 2003;34:2404–9.

    Article  PubMed  Google Scholar 

  13. Czosnyka M, Smielewski P, Kirkpatrick P, Piechnik S, Laing R, Pickard JD. Continuous monitoring of cerebrovascular pressure-reactivity in head injury. Acta Neurochir Suppl. 1998;71:74–7.

    CAS  PubMed  Google Scholar 

  14. Aries MJ, Czosnyka M, Budohoski KP, Steiner LA, Lavinio A, Kolias AG, Hutchinson PJ, Brady KM, Menon DK, Pickard JD, Smielewski P. Continuous determination of optimal cerebral perfusion pressure in traumatic brain injury. Crit Care Med. 2012;40:2456–63.

    Article  PubMed  Google Scholar 

  15. Timofeev I, Czosnyka M, Nortje J, Smielewski P, Kirkpatrick P, Gupta A, Hutchinson P. Effect of decompressive craniectomy on intracranial pressure and cerebrospinal compensation following traumatic brain injury. J Neurosurg. 2008;108:66–73.

    Article  PubMed  Google Scholar 

  16. Czosnyka M, Smielewski P, Kirkpatrick P, Menon DK, Pickard JD. Monitoring of cerebral autoregulation in head-injured patients. Stroke. 1996;27:1829–34.

    Article  CAS  PubMed  Google Scholar 

  17. Soehle M, Jaeger M, Meixensberger J. Online assessment of brain tissue oxygen autoregulation in traumatic brain injury and subarachnoid hemorrhage. Neurol Res. 2003;25:411–7.

    Article  PubMed  Google Scholar 

  18. Radolovich DK, Czosnyka M, Timofeev I, Lavinio A, Hutchinson P, Gupta A, Pickard JD, Smielewski P. Reactivity of brain tissue oxygen to change in cerebral perfusion pressure in head injured patients. Neurocrit Care. 2009;10:274–9.

    Article  CAS  PubMed  Google Scholar 

  19. Zweifel C, Castellani G, Czosnyka M, Helmy A, Manktelow A, Carrera E, Brady KM, Hutchinson PJ, Menon DK, Pickard JD, Smielewski P. Noninvasive monitoring of cerebrovascular reactivity with near infrared spectroscopy in head-injured patients. J Neurotrauma. 2010;27:1951–8.

    Article  PubMed  Google Scholar 

  20. Vajkoczy P, Roth H, Horn P, Lucke T, Thome C, Hubner U, Martin GT, Zappletal C, Klar E, Schilling L, Schmiedek P. Continuous monitoring of regional cerebral blood flow: experimental and clinical validation of a novel thermal diffusion microprobe. J Neurosurg. 2000;93:265–74.

    Article  CAS  PubMed  Google Scholar 

  21. Dias C, Silva MJ, Pereira E, Monteiro E, Maia I, Barbosa S, Silva S, Honrado T, Cerejo A, Aries MJ, Smielewski P, Paiva JA, Czosnyka M, (2015) Optimal cerebral perfusion pressure management at bedside: a single-center pilot study. Neurocrit Care.

  22. Bratton SL, Chestnut RM, Ghajar J, McConnell Hammond FF, Harris OA, Hartl R, Manley GT, Nemecek A, Newell DW, Rosenthal G, Schouten J, Shutter L, Timmons SD, Ullman JS, Videtta W, Wilberger JE, Wright DW. Guidelines for the management of severe traumatic brain injury IX. Cerebral perfusion thresholds. J Neurotrauma. 2007;24(Suppl 1):S59–64.

    PubMed  Google Scholar 

  23. Wilson JA, Shutter LA, Hartings JA. COSBID-M3: a platform for multimodal monitoring, data collection, and research in neurocritical care. Acta Neurochir Suppl. 2013;115:67–74.

    Article  PubMed  Google Scholar 

  24. Lang EW, Mehdorn HM, Dorsch NW, Czosnyka M. Continuous monitoring of cerebrovascular autoregulation: a validation study. J Neurol Neurosurg Psychiatry. 2002;72:583–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Sorrentino E, Budohoski KP, Kasprowicz M, Smielewski P, Matta B, Pickard JD, Czosnyka M. Critical thresholds for transcranial Doppler indices of cerebral autoregulation in traumatic brain injury. Neurocrit Care. 2011;14:188–93.

    Article  PubMed  Google Scholar 

  26. Naqvi J, Yap KH, Ahmad G, Ghosh J. Transcranial Doppler ultrasound: a review of the physical principles and major applications in critical care. Int J Vasc Med. 2013;2013:629378.

    PubMed Central  PubMed  Google Scholar 

  27. Juul N, Morris GF, Marshall SB, Marshall LF. Intracranial hypertension and cerebral perfusion pressure: influence on neurological deterioration and outcome in severe head injury. The Executive Committee of the International Selfotel Trial. J Neurosurg. 2000;92:1–6.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was funded by the Mayfield Education and Research Foundation and thermal diffusion probes were donated by Hemedex, Inc.

Conflict of interest

On behalf of all authors, the corresponding author states that there are no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jason M. Hinzman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tackla, R., Hinzman, J.M., Foreman, B. et al. Assessment of Cerebrovascular Autoregulation Using Regional Cerebral Blood Flow in Surgically Managed Brain Trauma Patients. Neurocrit Care 23, 339–346 (2015). https://doi.org/10.1007/s12028-015-0146-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12028-015-0146-5

Keywords

Navigation