Skip to main content

Advertisement

Log in

Increased Thyroxin During Therapeutic Hypothermia Predicts Death in Comatose Patients After Cardiac Arrest

  • Original Article
  • Published:
Neurocritical Care Aims and scope Submit manuscript

Abstract

Background

The course and prognostic value of pituitary-thyroid axis hormones is not well studied after cardiac arrest. We aimed to study the prognostic role of the pituitary-thyroid axis response to resuscitation from cardiac arrest before, during and after therapeutic hypothermia.

Methods

We conducted a retrospective cohort study in consecutive comatose patients after out-of-hospital cardiac arrest who were sampled before, during and up to 48 h after a 24-h period of therapeutic hypothermia in the intensive care unit (ICU). Thyroid-stimulating hormone, total and free thyroxine (T4) and triiodothyronine (T3) were determined and compared between ICU outcome groups.

Results

We included twenty-nine patients. TSH levels were comparable in non-survivors (n = 17) and survivors (n = 12). The free T4 levels were higher in non–survivors than in survivors (P = 0.001), whereas the free T3 levels were comparable. All samples’ results similarly declined in both outcome groups up to 72 h after start of 24 h hypothermia. ROC curves analyses showed a maximum AUC of 0.83 (P = 0.003) for free T4 at the end of hypothermia with an optimal cut off ≥17.8 pmol/L to obtain 100 % specificity and positive predictive value for non-survival.

Conclusion

Non-survival after cardiac arrest, coma, and therapeutic hypothermia following successful resuscitation is associated with a transient increase in free T4, most probably due to inhibition of free T4 to T3 conversion. However, before routine clinical application, external validation of our finding to assess generalizability is warranted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Longstreth WT Jr, Manowitz NR, DeGroot LJ, Siscovick DS, Mayor GH, Copass MK, et al. Plasma thyroid hormone profiles immediately following out-of-hospital cardiac arrest. Thyroid. 1996;6:649–53.

    Article  PubMed  Google Scholar 

  2. Ranasinghe AM, Bonser RS. Endocrine changes in brain death and transplantation. Best Pract Res Clin Endocrinol Metab. 2011;25:799–812.

    Article  CAS  PubMed  Google Scholar 

  3. de Jong MF, Beishuizen A, de Jong MJ, Girbes AR, Groeneveld AB. The pituitary–adrenal axis is activated more in non-survivors than in survivors of cardiac arrest, irrespective of therapeutic hypothermia. Resuscitation. 2008;78:281–8.

    Article  PubMed  Google Scholar 

  4. Wortsman J, Premachandra BN, Chopra IJ, Murphy JE. Hypothyroxinemia in cardiac arrest. Arch Intern Med. 1987;147:245–8.

    Article  CAS  PubMed  Google Scholar 

  5. Iltumur K, Olmez G, Ariturk Z, Taskesen T, Toprak N. Clinical investigation: thyroid function test abnormalities in cardiac arrest associated with acute coronary syndrome. Crit Care. 2005;9:R416–24.

    Article  PubMed Central  PubMed  Google Scholar 

  6. James SR, Ranasinghe AM, Venkateswaran R, McCabe CJ, Franklyn JA, Bonser RS. The effects of acute triiodothyronine therapy on myocardial gene expression in brain stem dead cardiac donors. J Clin Endocrinol Metab. 2010;95:1338–43.

    Article  CAS  PubMed  Google Scholar 

  7. Wang F, Pan W, Wang H, Wang S, Pan S, Ge J. Relationship between thyroid function and ICU mortality: a prospective observation study. Crit Care. 2012;16:R11.

    Article  PubMed Central  PubMed  Google Scholar 

  8. Mendes-de-Aguiar CB, Alchini R, Decker H, Alvarez-Silva M, Tasca CI, Trentin AG. Thyroid hormone increases astrocytic glutamate uptake and protects astrocytes and neurons against glutamate toxicity. J Neurosci Res. 2008;86:3117–25.

    Article  CAS  PubMed  Google Scholar 

  9. Lin HY, Davis FB, Luidens MK, Mousa SA, Cao JH, Zhou M, et al. Molecular basis for certain neuroprotective effects of thyroid hormone. Front Mol Neurosci. 2011;4:29.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Perez-Blanco A, Caturla-Such J, Canovas-Robles J, Sanchez-Paya J. Efficiency of triiodothyronine treatment on organ donor hemodynamic management and adenine nucleotide concentration. Intensive Care Med. 2005;31:943–8.

    Article  PubMed  Google Scholar 

  11. Salim A, Martin M, Brown C, Inaba K, Roth B, Hadjizacharia P, et al. Using thyroid hormone in brain-dead donors to maximize the number of organs available for transplantation. Clin Transplant. 2007;21:405–9.

    Article  PubMed  Google Scholar 

  12. Abdelnour T, Rieke S. Relationship of hormonal resuscitation therapy and central venous pressure on increasing organs for transplant. J Heart Lung Transplant. 2009;28:480–5.

    Article  PubMed  Google Scholar 

  13. Venkateswaran RV, Steeds RP, Quinn DW, Nightingale P, Wilson IC, Mascaro JG, et al. The haemodynamic effects of adjunctive hormone therapy in potential heart donors: a prospective randomized double-blind factorially designed controlled trial. Eur Heart J. 2009;30:1771–80.

    Article  CAS  PubMed  Google Scholar 

  14. Macdonald PS, Aneman A, Bhonagiri D, Jones D, O’Callaghan G, Silvester W, et al. A systematic review and meta-analysis of clinical trials of thyroid hormone administration to brain dead potential organ donors. Crit Care Med. 2012;40:1635–44.

    Article  CAS  PubMed  Google Scholar 

  15. Van den Berghe G, de Zegher F. Anterior pituitary function during critical illness and dopamine treatment. Crit Care Med. 1996;24:1580–90.

    Article  PubMed  Google Scholar 

  16. Ririe DG, Butterworth JF, Hines M, Hammon JW Jr, Zaloga GP. Effects of cardiopulmonary bypass and deep hypothermic circulatory arrest on the thyroid axis during and after repair of congenital heart defects: preservation by deep hypothermia? Anesth Analg. 1998;87:543–8.

    CAS  PubMed  Google Scholar 

  17. Peeters RP, Wouters PJ, Kaptein E, van Toor H, Visser TJ, van den Berghe G. Reduced activation and increased inactivation of thyroid hormone in tissues of critically ill patients. J Clin Endocrinol Metab. 2003;88:3202–11.

    Article  CAS  PubMed  Google Scholar 

  18. Chinga-Alayo E, Villena J, Evans AT, Zimic M. Thyroid hormone levels improve the prediction of mortality among patients admitted to the intensive care unit. Intensive Care Med. 2005;31:1356–61.

    Article  PubMed  Google Scholar 

  19. Vanhorebeek I, Langouche L, Van den Berghe G. Endocrine aspects of acute and prolonged critical illness. Nat Clin Pract Endocrinol Metab. 2006;2:20–31.

    Article  CAS  PubMed  Google Scholar 

  20. Plikat K, Langgartner J, Buettner R, Bollheimer LC, Woenckhaus U, Scholmerich J, et al. Frequency and outcome of patients with nonthyroidal illness syndrome in a medical intensive care unit. Metabolism. 2007;56:239–44.

    Article  CAS  PubMed  Google Scholar 

  21. Bello G, Ceaichisciuc I, Silva S, Antonelli M. The role of thyroid dysfunction in the critically ill: a review of the literature. Minerva Anestesiol. 2010;76:919–28.

    CAS  PubMed  Google Scholar 

  22. Simonides WS, Mulcahey MA, Redout EM, Muller A, Zuidwijk MJ, Visser TJ, et al. Hypoxia-inducible factor induces local thyroid hormone inactivation during hypoxic-ischemic disease in rats. J Clin Invest. 2008;118:975–83.

    PubMed Central  CAS  PubMed  Google Scholar 

  23. Wilson O, Hedner P, Laurell S, Nosslin B, Rerup C, Rosengren E. Thyroid and adrenal response to acute cold exposure in man. J Appl Physiol. 1970;28:543–8.

    CAS  PubMed  Google Scholar 

  24. Nogues R, Sitges-Serra A, Sancho JJ, Sanz F, Monne J, Girvent M, et al. Influence of nutrition, thyroid hormones, and rectal temperature on in-hospital mortality of elderly patients with acute illness. Am J Clin Nutr. 1995;61:597–602.

    CAS  PubMed  Google Scholar 

  25. Meissner W, Krapp C, Kauf E, Dohrn B, Reinhart K. Thyroid hormone response to moderate hypothermia in severe brain injury. Intensive Care Med. 2003;29:44–8.

    PubMed  Google Scholar 

  26. Ishikawa T, Michiue T, Zhao D, Komatsu A, Azuma Y, Quan L, et al. Evaluation of postmortem serum and cerebrospinal fluid levels of thyroid-stimulating hormone with special regard to fatal hypothermia. Leg Med (Tokyo). 2009;11(Suppl 1):S228–30.

    Article  Google Scholar 

  27. Yamashita K, Suganuma K, Funase Y, Yamauchi K, Aizawa T. Elevation of thyrotropin upon accidental hypothermia in an elderly man. Thyroid. 2012;22:1291–3.

    Article  CAS  PubMed  Google Scholar 

  28. Taccone F, Cronberg T, Friberg H, Greer D, Horn J, Oddo M, et al. How to assess prognosis after cardiac arrest and therapeutic hypothermia. Crit Care. 2014;18:202.

    Article  PubMed Central  PubMed  Google Scholar 

  29. Hanley JA, Negassa A, Edwardes MD, Forrester JE. Statistical analysis of correlated data using generalized estimating equations: an orientation. Am J Epidemiol. 2003;157:364–75.

    Article  PubMed  Google Scholar 

  30. Mebis L, Van den Berghe G. Thyroid axis function and dysfunction in critical illness. Best Pract Res Clin Endocrinol Metab. 2011;25:745–57.

    Article  CAS  PubMed  Google Scholar 

  31. den Uil CA, Lagrand WK, van der Ent M, Jewbali LS, Cheng JM, Spronk PE, et al. Impaired microcirculation predicts poor outcome of patients with acute myocardial infarction complicated by cardiogenic shock. Eur Heart J. 2010;31:3032–9.

    Article  Google Scholar 

  32. Bouwes A, Binnekade JM, Kuiper MA, Bosch FH, Zandstra DF, Toornvliet AC, et al. Prognosis of coma after therapeutic hypothermia: a prospective cohort study. Ann Neurol. 2012;71:206–12.

    Article  PubMed  Google Scholar 

  33. Stevenson HP, Archbold PR, Jonhsron P, Young IS, Sheridan B. Misleading serum free thyroxine results during low molecular weight heparin treatment. Clin Chemistry. 1998;44:1002–7.

    CAS  Google Scholar 

  34. Laji K, Rhidha B, John R, Lazarus J, Davies JS. Abnormal serum free thyroid hormone levels due to heparin administration. Q J Med. 2001;94:471–3.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the staff of participating ICU’s for help.

Conflict of interest

None of the authors have a conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mathieu van der Jagt.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

van der Jagt, M., Knoops, S., de Jong, M.F.C. et al. Increased Thyroxin During Therapeutic Hypothermia Predicts Death in Comatose Patients After Cardiac Arrest. Neurocrit Care 23, 198–204 (2015). https://doi.org/10.1007/s12028-014-0091-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12028-014-0091-8

Keywords

Navigation