Therapeutic Hypothermia Reduces Middle Cerebral Artery Flow Velocity in Patients with Severe Aneurysmal Subarachnoid Hemorrhage

Abstract

Background

Transcranial Doppler (TCD) is widely used to detect and follow up cerebral vasospasm after subarachnoid hemorrhage (SAH). Therapeutic hypothermia might influence blood flow velocities assessed by TCD. The aim of the study was to evaluate the effect of hypothermia on Doppler blood flow velocity after SAH.

Methods

In 20 patients treated with hypothermia (33°) due to refractory intracranial hypertension or delayed cerebral ischemia (DCI), mean flow velocity of the middle cerebral artery (MFVMCA) was assessed by TCD. Thirteen patients were treated with combined hypothermia and barbiturate coma and seven with hypothermia alone. MFVMCA was obtained within 24 h before and after induction of hypothermia as well as before and after rewarming.

Results

Hypothermia was induced on average 5 days after SAH (range 1–12) and maintained for 144 h (range 29–270). After hypothermia induction, MFVMCA decreased from 113.7 ± 49.0 to 93.8 ± 44.7 cm/s (p = 0.001). The decrease was independent of SAH-related complications and barbiturate coma. MFVMCA further decreased by 28.2 cm/s between early and late hypothermia (p < 0.001). This second decrease was observed in patients with DCI (p < 0.001), but not in patients with intracranial hypertension (p = 0.715). Compared to late hypothermia, MFVMCA remained unchanged after rewarming (65.6 ± 32.1 vs 70.3 ± 36.8 cm/s; p = 0.219). However, patients treated with hypothermia alone showed an increase in MFVMCA after rewarming (p = 0.016).

Conclusion

Therapeutic hypothermia after SAH decreases Doppler blood flow velocity in both intracranial hypertension and DCI cases. The results can be the effect of hypothermia-related mechanisms or resolving cerebral vasospasm during prolonged hypothermia.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. 1.

    Heuer GG, Smith MJ, Elliott JP, Winn HR, LeRoux PD. Relationship between intracranial pressure and other clinical variables in patients with aneurysmal subarachnoid hemorrhage. J Neurosurg. 2004;101:408–16.

    PubMed  Article  Google Scholar 

  2. 2.

    Vergouwen MD, Ilodigwe D, Macdonald RL. Cerebral infarction after subarachnoid hemorrhage contributes to poor outcome by vasospasm-dependent and -independent effects. Stroke. 2011;42:924–9.

    PubMed  Article  Google Scholar 

  3. 3.

    Thome C, Schubert G, Piepgras A, Elste V, Schilling L, Schmiedek P. Hypothermia reduces acute vasospasm following SAH in rats. Acta Neurochir Suppl. 2001;77:255–8.

    CAS  PubMed  Google Scholar 

  4. 4.

    Schubert GA, Poli S, Mendelowitsch A, Schilling L, Thome C. Hypothermia reduces early hypoperfusion and metabolic alterations during the acute phase of massive subarachnoid hemorrhage: a laser-Doppler-flowmetry and microdialysis study in rats. J Neurotrauma. 2008;25:539–48.

    PubMed  Article  Google Scholar 

  5. 5.

    Schubert GA, Poli S, Schilling L, Heiland S, Thome C. Hypothermia reduces cytotoxic edema and metabolic alterations during the acute phase of massive SAH: a diffusion-weighted imaging and spectroscopy study in rats. J Neurotrauma. 2008;25:841–52.

    PubMed  Article  Google Scholar 

  6. 6.

    Piepgras A, Elste V, Frietsch T, Schmiedek P, Reith W, Schilling L. Effect of moderate hypothermia on experimental severe subarachnoid hemorrhage, as evaluated by apparent diffusion coefficient changes. Neurosurgery. 2001;48:1128–34 discussion 34–5.

    CAS  PubMed  Article  Google Scholar 

  7. 7.

    Wang ZP, Chen HS, Wang FX. Influence of plasma and cerebrospinal fluid levels of endothelin-1 and no in reducing cerebral vasospasm after subarachnoid hemorrhage during treatment with mild hypothermia, in a dog model. Cell Biochem Biophys. 2011;61:137–43.

    CAS  PubMed  Article  Google Scholar 

  8. 8.

    Todd MM, Hindman BJ, Clarke WR, Torner JC. Mild intraoperative hypothermia during surgery for intracranial aneurysm. N Engl J Med. 2005;352:135–45.

    CAS  PubMed  Article  Google Scholar 

  9. 9.

    Gasser S, Khan N, Yonekawa Y, Imhof HG, Keller E. Long-term hypothermia in patients with severe brain edema after poor-grade subarachnoid hemorrhage: feasibility and intensive care complications. J Neurosurg Anesthesiol. 2003;15:240–8.

    PubMed  Article  Google Scholar 

  10. 10.

    Seule MA, Muroi C, Mink S, Yonekawa Y, Keller E. Therapeutic hypothermia in patients with aneurysmal subarachnoid hemorrhage, refractory intracranial hypertension, or cerebral vasospasm. Neurosurgery. 2009;64:86–92 discussion 3.

    PubMed  Article  Google Scholar 

  11. 11.

    Seule M, Keller E. Hypothermia after aneurysmal subarachnoid hemorrhage. Crit Care. 2012;16(Suppl 2):21–3.

    Article  Google Scholar 

  12. 12.

    Erecinska M, Thoresen M, Silver IA. Effects of hypothermia on energy metabolism in mammalian central nervous system. J Cereb Blood Flow Metab. 2003;23:513–30.

    CAS  PubMed  Article  Google Scholar 

  13. 13.

    Yenari M, Wijman C, Stienberg G. Effects of hypothermia on cerebral metabolism, blood flow and autoregulation. New York: Marcel Dekker; 2004.

    Google Scholar 

  14. 14.

    Rosomoff HL, Holaday DA. Cerebral blood flow and cerebral oxygen consumption during hypothermia. Am J Physiol. 1954;179:85–8.

    CAS  PubMed  Google Scholar 

  15. 15.

    Ehrlich MP, McCullough JN, Zhang N, et al. Effect of hypothermia on cerebral blood flow and metabolism in the pig. Ann Thorac Surg. 2002;73:191–7.

    PubMed  Article  Google Scholar 

  16. 16.

    Marion DW, Obrist WD, Carlier PM, Penrod LE, Darby JM. The use of moderate therapeutic hypothermia for patients with severe head injuries: a preliminary report. J Neurosurg. 1993;79:354–62.

    CAS  PubMed  Article  Google Scholar 

  17. 17.

    Shiozaki T, Sugimoto H, Taneda M, et al. Effect of mild hypothermia on uncontrollable intracranial hypertension after severe head injury. J Neurosurg. 1993;79:363–8.

    CAS  PubMed  Article  Google Scholar 

  18. 18.

    Metz C, Holzschuh M, Bein T, et al. Moderate hypothermia in patients with severe head injury: cerebral and extracerebral effects. J Neurosurg. 1996;85:533–41.

    CAS  PubMed  Article  Google Scholar 

  19. 19.

    Keller E, Krayenbuhl N, Bjeljac M, Yonekawa Y. Cerebral vasospasm: results of a structured multimodal treatment. Acta Neurochir Suppl. 2005;94:65–73.

    CAS  PubMed  Article  Google Scholar 

  20. 20.

    Aaslid R, Markwalder TM, Nornes H. Noninvasive transcranial Doppler ultrasound recording of flow velocity in basal cerebral arteries. J Neurosurg. 1982;57:769–74.

    CAS  PubMed  Article  Google Scholar 

  21. 21.

    Krejza J, Mariak Z, Walecki J, Szydlik P, Lewko J, Ustymowicz A. Transcranial color Doppler sonography of basal cerebral arteries in 182 healthy subjects: age and sex variability and normal reference values for blood flow parameters. AJR Am J Roentgenol. 1999;172:213–8.

    CAS  PubMed  Article  Google Scholar 

  22. 22.

    Clyde BL, Resnick DK, Yonas H, Smith HA, Kaufmann AM. The relationship of blood velocity as measured by transcranial doppler ultrasonography to cerebral blood flow as determined by stable xenon computed tomographic studies after aneurysmal subarachnoid hemorrhage. Neurosurgery. 1996;38:896–904 discussion-5.

    CAS  PubMed  Article  Google Scholar 

  23. 23.

    Bishop CC, Powell S, Rutt D, Browse NL. Transcranial Doppler measurement of middle cerebral artery blood flow velocity: a validation study. Stroke. 1986;17:913–5.

    CAS  PubMed  Article  Google Scholar 

  24. 24.

    Lindegaard KF, Lundar T, Wiberg J, Sjoberg D, Aaslid R, Nornes H. Variations in middle cerebral artery blood flow investigated with noninvasive transcranial blood velocity measurements. Stroke. 1987;18:1025–30.

    CAS  PubMed  Article  Google Scholar 

  25. 25.

    Baumgartner RW, Mathis J, Sturzenegger M, Mattle HP. A validation study on the intraobserver reproducibility of transcranial color-coded duplex sonography velocity measurements. Ultrasound Med Biol. 1994;20:233–7.

    CAS  PubMed  Article  Google Scholar 

  26. 26.

    ter Minassian A, Melon E, Leguerinel C, Lodi CA, Bonnet F, Beydon L. Changes in cerebral blood flow during PaCO2 variations in patients with severe closed head injury: comparison between the Fick and transcranial Doppler methods. J Neurosurg. 1998;88:996–1001.

    PubMed  Article  Google Scholar 

  27. 27.

    Giller CA, Bowman G, Dyer H, Mootz L, Krippner W. Cerebral arterial diameters during changes in blood pressure and carbon dioxide during craniotomy. Neurosurgery. 1993;32:737–41 discussion 41–2.

    CAS  PubMed  Article  Google Scholar 

  28. 28.

    Fontanella M, Valfre W, Benech F, et al. Vasospasm after SAH due to aneurysm rupture of the anterior circle of Willis: value of TCD monitoring. Neurol Res. 2008;30:256–61.

    PubMed  Article  Google Scholar 

  29. 29.

    Weir B, Macdonald RL, Stoodley M. Etiology of cerebral vasospasm. Acta Neurochir Suppl. 1999;72:27–46.

    CAS  PubMed  Google Scholar 

  30. 30.

    Nemoto EM, Klementavicius R, Melick JA, Yonas H. Suppression of cerebral metabolic rate for oxygen (CMRO2) by mild hypothermia compared with thiopental. J Neurosurg Anesthesiol. 1996;8:52–9.

    CAS  PubMed  Article  Google Scholar 

  31. 31.

    Steen PA, Newberg L, Milde JH, Michenfelder JD. Hypothermia and barbiturates: individual and combined effects on canine cerebral oxygen consumption. Anesthesiology. 1983;58:527–32.

    CAS  PubMed  Article  Google Scholar 

  32. 32.

    Kim JH, Kim SH, Yoo SK, Kim JY, Nam YT. The effects of mild hypothermia on thiopental-induced electroencephalogram burst suppression. J Neurosurg Anesthesiol. 1998;10:137–41.

    CAS  PubMed  Article  Google Scholar 

  33. 33.

    Schwab S, Schwarz S, Aschoff A, Keller E, Hacke W. Moderate hypothermia and brain temperature in patients with severe middle cerebral artery infarction. Acta Neurochir Suppl. 1998;71:131–4.

    CAS  PubMed  Google Scholar 

  34. 34.

    Iida K, Kurisu K, Arita K, Ohtani M. Hyperemia prior to acute brain swelling during rewarming of patients who have been treated with moderate hypothermia for severe head injuries. J Neurosurg. 2003;98:793–9.

    PubMed  Article  Google Scholar 

  35. 35.

    Giannotta SL, Raisis JE, McGillicuddy JE, Kindt GW. The effect of temperature on cerebrovascular resistance and cerebral metabolism in the primate. J Surg Res. 1978;25:105–10.

    CAS  PubMed  Article  Google Scholar 

  36. 36.

    Van Bel F, Zeeuwe PE, Dorrepaal CA, Benders MJ, Van de Bor M, Hardjowijono R. Changes in cerebral hemodynamics and oxygenation during hypothermic cardiopulmonary bypass in neonates and infants. Biol Neonate. 1996;70:141–54.

    PubMed  Article  Google Scholar 

  37. 37.

    Keller E, Steiner T, Fandino J, Schwab S, Hacke W. Changes in cerebral blood flow and oxygen metabolism during moderate hypothermia in patients with severe middle cerebral artery infarction. Neurosurg Focus. 2000;8:e4.

    CAS  PubMed  Article  Google Scholar 

  38. 38.

    Nakamura T, Nagao S, Kawai N, Honma Y, Kuyama H. Significance of multimodal cerebral monitoring under moderate therapeutic hypothermia for severe head injury. Acta Neurochir Suppl. 1998;71:85–7.

    CAS  PubMed  Google Scholar 

  39. 39.

    Bisschops LL, van der Hoeven JG, Hoedemaekers CW. Effects of prolonged mild hypothermia on cerebral blood flow after cardiac arrest. Crit Care Med. 2012;40:2362–7.

    PubMed  Article  Google Scholar 

  40. 40.

    Török E, Klopotowski M, Trabold R, Thal SC, Plesnila N, Scholler K. Mild hypothermia (33 degrees C) reduces intracranial hypertension and improves functional outcome after subarachnoid hemorrhage in rats. Neurosurgery. 2009;65:352–9 discussion 9.

    PubMed  Article  Google Scholar 

  41. 41.

    Kawamura S, Suzuki A, Hadeishi H, Yasui N, Hatazawa J. Cerebral blood flow and oxygen metabolism during mild hypothermia in patients with subarachnoid haemorrhage. Acta Neurochir (Wien). 2000;142:1117–11121 discussion 21–2.

    CAS  Article  Google Scholar 

  42. 42.

    Voldby B, Enevoldsen EM, Jensen FT. Regional CBF, intraventricular pressure, and cerebral metabolism in patients with ruptured intracranial aneurysms. J Neurosurg. 1985;62:48–58.

    CAS  PubMed  Article  Google Scholar 

  43. 43.

    Grubb RL Jr, Raichle ME, Eichling JO, Gado MH. Effects of subarachnoid hemorrhage on cerebral blood volume, blood flow, and oxygen utilization in humans. J Neurosurg. 1977;46:446–53.

    PubMed  Article  Google Scholar 

  44. 44.

    Macdonald RL, Pluta RM, Zhang JH. Cerebral vasospasm after subarachnoid hemorrhage: the emerging revolution. Nat Clin Pract Neurol. 2007;3:256–63.

    CAS  PubMed  Article  Google Scholar 

  45. 45.

    Muroi C, Frei K, El Beltagy M, Cesnulis E, Yonekawa Y, Keller E. Combined therapeutic hypothermia and barbiturate coma reduces interleukin-6 in the cerebrospinal fluid after aneurysmal subarachnoid hemorrhage. J Neurosurg Anesthesiol. 2008;20:193–8.

    PubMed  Article  Google Scholar 

  46. 46.

    Jarus-Dziedzic K, Juniewicz H, Wronski J, et al. The relation between cerebral blood flow velocities as measured by TCD and the incidence of delayed ischemic deficits. A prospective study after subarachnoid hemorrhage. Neurol Res. 2002;24:582–92.

    PubMed  Article  Google Scholar 

  47. 47.

    Keller E, Imhof HG, Gasser S, Terzic A, Yonekawa Y. Endovascular cooling with heat exchange catheters: a new method to induce and maintain hypothermia. Intensive Care Med. 2003;29:939–43.

    PubMed  Google Scholar 

Download references

Acknowledgments

M. S. was supported by a personal research Grant from the University Zurich, Switzerland.

Conflict of interest

The other authors have no financial or institutional conflict of interest.

Author information

Affiliations

Authors

Corresponding author

Correspondence to M. Seule.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Seule, M., Muroi, C., Sikorski, C. et al. Therapeutic Hypothermia Reduces Middle Cerebral Artery Flow Velocity in Patients with Severe Aneurysmal Subarachnoid Hemorrhage. Neurocrit Care 20, 255–262 (2014). https://doi.org/10.1007/s12028-013-9927-x

Download citation

Keywords

  • Hypothermia
  • Subarachnoid hemorrhage
  • Transcranial Doppler
  • Flow velocity
  • Cerebral blood flow