Skip to main content

Advertisement

Log in

Fluid Responsiveness and Brain Tissue Oxygen Augmentation After Subarachnoid Hemorrhage

  • Original Article
  • Published:
Neurocritical Care Aims and scope Submit manuscript

Abstract

Background

The objective of this study was to investigate the relationship between cardiac index (CI) response to a fluid challenge and changes in brain tissue oxygen pressure (PbtO2) in patients with subarachnoid hemorrhage (SAH).

Methods

Prospective observational study was conducted in a neurological intensive care unit of a university hospital. Fifty-seven fluid challenges were administered to ten consecutive comatose SAH patients that underwent multimodality monitoring of CI, intracranial pressure (ICP), and PbtO2, according to a standardized fluid management protocol.

Results

The relationship between CI and PbtO2 was analyzed with logistic regression utilizing generalized estimating equations. Of the 57 fluid boluses analyzed, 27 (47 %) resulted in a ≥ 10 % increase in CI. Median absolute (+5.8 vs. +1.3 mmHg) and percent (20.7 vs. 3.5 %) changes in PbtO2 were greater in CI responders than in non-responders within 30 min after the end of the fluid bolus infusion. In a multivariable model, a CI response was independently associated with PbtO2 response (adjusted odds ratio 21.5, 95 % CI 1.4–324, P = 0.03) after adjusting for mean arterial pressure change and end-tidal CO2. Stroke volume variation showed a good ability to predict CI and PbtO2 response with areas under the ROC curve of 0.86 and 0.81 with the best cut-off values of 9 % for both responses.

Conclusion

Bolus fluid resuscitation resulting in augmentation of CI can improve cerebral oxygenation after SAH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Michard F, Teboul JL. Predicting fluid responsiveness in ICU patients: a critical analysis of the evidence. Chest. 2002;121:2000–8.

    Article  PubMed  Google Scholar 

  2. Rivers E, Nguyen B, Havstad S, et al. Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med. 2001;345:1368–77.

    Article  CAS  PubMed  Google Scholar 

  3. Rivers EP. Early goal-directed therapy in severe sepsis and septic shock: converting science to reality. Chest. 2006;129:217–8.

    Article  PubMed  Google Scholar 

  4. Claassen J, Hirsch LJ, Kreiter KT, et al. Quantitative continuous EEG for detecting delayed cerebral ischemia in patients with poor-grade subarachnoid hemorrhage. Clin Neurophysiol. 2004;115:2699–710.

    Article  PubMed  Google Scholar 

  5. Botteri M, Bandera E, Minelli C, Latronico N. Cerebral blood flow thresholds for cerebral ischemia in traumatic brain injury. A systematic review. Crit Care Med. 2008;36:3089–92.

    Article  PubMed  Google Scholar 

  6. Coles JP. Regional ischemia after head injury. Curr Opin Crit Care. 2004;10:120–5.

    Article  PubMed  Google Scholar 

  7. Janjua N, Mayer SA. Cerebral vasospasm after subarachnoid hemorrhage. Curr Opin Crit Care. 2003;9:113–9.

    Article  PubMed  Google Scholar 

  8. Zazulia AR, Diringer MN, Videen TO, et al. Hypoperfusion without ischemia surrounding acute intracerebral hemorrhage. J Cereb Blood Flow Metab. 2001;21:804–10.

    Article  CAS  PubMed  Google Scholar 

  9. Robertson CS, Valadka AB, Hannay HJ, et al. Prevention of secondary ischemic insults after severe head injury. Crit Care Med. 1999;27:2086–95.

    Article  CAS  PubMed  Google Scholar 

  10. Johnston AJ, Steiner LA, Coles JP, et al. Effect of cerebral perfusion pressure augmentation on regional oxygenation and metabolism after head injury. Crit Care Med. 2005;33:189–95 discussion 255–7.

    Article  PubMed  Google Scholar 

  11. Bratton SL, Chestnut RM, Ghajar J, et al. Guidelines for the management of severe traumatic brain injury. X. Brain oxygen monitoring and thresholds. J Neurotrauma. 2007;24(Suppl 1):S65–70.

    PubMed  Google Scholar 

  12. Muench E, Horn P, Bauhuf C, et al. Effects of hypervolemia and hypertension on regional cerebral blood flow, intracranial pressure, and brain tissue oxygenation after subarachnoid hemorrhage. Crit Care Med. 2007;35:1844–51 quiz 52.

    Article  PubMed  Google Scholar 

  13. White H, Venkatesh B. Cerebral perfusion pressure in neurotrauma: a review. Anesth Analg. 2008;107:979–88.

    Article  PubMed  Google Scholar 

  14. Bederson JB, Connolly ES Jr, Batjer HH, et al. Guidelines for the management of aneurysmal subarachnoid hemorrhage: a statement for healthcare professionals from a special writing group of the Stroke Council, American Heart Association. Stroke. 2009;40:994–1025.

    Article  PubMed  Google Scholar 

  15. Broderick J, Connolly S, Feldmann E, et al. Guidelines for the management of spontaneous intracerebral hemorrhage in adults: 2007 update: a guideline from the American Heart Association/American Stroke Association Stroke Council, High Blood Pressure Research Council, and the Quality of Care and Outcomes in Research Interdisciplinary Working Group. Circulation. 2007;116:e391–413.

    Article  PubMed  Google Scholar 

  16. Otero RM, Nguyen HB, Huang DT, et al. Early goal-directed therapy in severe sepsis and septic shock revisited: concepts, controversies, and contemporary findings. Chest. 2006;130:1579–95.

    Article  PubMed  Google Scholar 

  17. Berkowitz DM, Danai PA, Eaton S, Moss M, Martin GS. Accurate characterization of extravascular lung water in acute respiratory distress syndrome. Crit Care Med. 2008;36:1803–9.

    Article  PubMed Central  PubMed  Google Scholar 

  18. Wiedemann HP, Wheeler AP, Bernard GR, et al. Comparison of two fluid-management strategies in acute lung injury. N Engl J Med. 2006;354:2564–75.

    Article  CAS  PubMed  Google Scholar 

  19. Payen D, de Pont AC, Sakr Y, Spies C, Reinhart K, Vincent JL. A positive fluid balance is associated with a worse outcome in patients with acute renal failure. Crit Care. 2008;12:R74.

    Article  PubMed Central  PubMed  Google Scholar 

  20. Lennihan L, Mayer SA, Fink ME, et al. Effect of hypervolemic therapy on cerebral blood flow after subarachnoid hemorrhage: a randomized controlled trial. Stroke. 2000;31:383–91.

    Article  CAS  PubMed  Google Scholar 

  21. Contant CF, Valadka AB, Gopinath SP, Hannay HJ, Robertson CS. Adult respiratory distress syndrome: a complication of induced hypertension after severe head injury. J Neurosurg. 2001;95:560–8.

    Article  CAS  PubMed  Google Scholar 

  22. Wartenberg KE, Schmidt JM, Claassen J, et al. Impact of medical complications on outcome after subarachnoid hemorrhage. Crit Care Med. 2006;34:617–23 quiz 24.

    Article  PubMed  Google Scholar 

  23. Mayer SA, Fink ME, Homma S, et al. Cardiac injury associated with neurogenic pulmonary edema following subarachnoid hemorrhage. Neurology. 1994;44:815–20.

    Article  CAS  PubMed  Google Scholar 

  24. Mascia L, Sakr Y, Pasero D, Payen D, Reinhart K, Vincent JL. Extracranial complications in patients with acute brain injury: a post hoc analysis of the SOAP study. Intensive Care Med. 2008;34:720–7.

    Article  PubMed  Google Scholar 

  25. Schmidt JM, Wartenberg KE, Fernandez A, et al. Frequency and clinical impact of asymptomatic cerebral infarction due to vasospasm after subarachnoid hemorrhage. J Neurosurg. 2008;109:1052–9.

    Article  PubMed  Google Scholar 

  26. Mayer J, Boldt J, Schollhorn T, Rohm KD, Mengistu AM, Suttner S. Semi-invasive monitoring of cardiac output by a new device using arterial pressure waveform analysis: a comparison with intermittent pulmonary artery thermodilution in patients undergoing cardiac surgery. Br J Anaesth. 2007;98:176–82.

    Article  CAS  PubMed  Google Scholar 

  27. de Waal EE, Kalkman CJ, Rex S, Buhre WF. Validation of a new arterial pulse contour-based cardiac output device. Crit Care Med. 2007;35:1904–9.

    Article  PubMed  Google Scholar 

  28. Ostergaard M, Nielsen J, Rasmussen JP, Berthelsen PG. Cardiac output–pulse contour analysis vs. pulmonary artery thermodilution. Acta Anaesthesiol Scand. 2006;50:1044–9.

    Article  CAS  PubMed  Google Scholar 

  29. Wan L, Naka T, Uchino S, Bellomo R. A pilot study of pulse contour cardiac output monitoring in patients with septic shock. Crit Care Resusc. 2005;7:165.

    CAS  PubMed  Google Scholar 

  30. Rose JC, Neill TA, Hemphill JC 3rd. Continuous monitoring of the microcirculation in neurocritical care: an update on brain tissue oxygenation. Curr Opin Crit Care. 2006;12:97–102.

    Article  PubMed  Google Scholar 

  31. Stewart C, Haitsma I, Zador Z, et al. The new Licox combined brain tissue oxygen and brain temperature monitor: assessment of in vitro accuracy and clinical experience in severe traumatic brain injury. Neurosurgery. 2008;63:1159–64 discussion 64–5.

    Article  PubMed  Google Scholar 

  32. Jaeger M, Soehle M, Schuhmann MU, Winkler D, Meixensberger J. Correlation of continuously monitored regional cerebral blood flow and brain tissue oxygen. Acta Neurochir (Wien). 2005;147:51–6 discussion 6.

    Article  CAS  Google Scholar 

  33. Lee SK, Morabito D, Hemphill JC, et al. Small-volume resuscitation with HBOC-201: effects on cardiovascular parameters and brain tissue oxygen tension in an out-of-hospital model of hemorrhage in swine. Acad Emerg Med. 2002;9:969–76.

    Article  PubMed  Google Scholar 

  34. Manley GT, Hemphill JC, Morabito D, et al. Small-volume resuscitation with the hemoglobin substitute HBOC-201: effect on brain tissue oxygenation. Adv Exp Med Biol. 2003;530:311–7.

    Article  PubMed  Google Scholar 

  35. Steiner T, Juvela S, Unterberg A, Jung C, Forsting M, Rinkel G. European stroke organization guidelines for the management of intracranial aneurysms and subarachnoid haemorrhage. Cerebrovasc Dis. 2013;35:93–112.

    Article  PubMed  Google Scholar 

  36. Connolly ES Jr, Rabinstein AA, Carhuapoma JR, et al. Guidelines for the management of aneurysmal subarachnoid hemorrhage: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2012;43:1711–37.

    Article  PubMed  Google Scholar 

  37. Badjatia N, Strongilis E, Gordon E, et al. Metabolic impact of shivering during therapeutic temperature modulation: the bedside shivering assessment scale. Stroke. 2008;39:3242–7.

    Article  PubMed  Google Scholar 

  38. Badjatia N, Strongilis E, Prescutti M, et al. Metabolic benefits of surface counter warming during therapeutic temperature modulation. Crit Care Med. 2009;37:1893–7.

    Article  PubMed  Google Scholar 

  39. Choi HA, Ko SB, Presciutti M, et al. Prevention of shivering during therapeutic temperature modulation: the columbia anti-shivering protocol. Neurocrit Care. 2011;14:389–94.

    Article  PubMed  Google Scholar 

  40. Oddo M, Nduom E, Frangos S, et al. Acute lung injury is an independent risk factor for brain hypoxia after severe traumatic brain injury. Neurosurgery. 2010;67:338–44.

    Article  PubMed  Google Scholar 

  41. Mutoh T, Kazumata K, Ajiki M, Ushikoshi S, Terasaka S. Goal-directed fluid management by bedside transpulmonary hemodynamic monitoring after subarachnoid hemorrhage. Stroke. 2007;38:3218–24.

    Article  PubMed  Google Scholar 

  42. Jost SC, Diringer MN, Zazulia AR, et al. Effect of normal saline bolus on cerebral blood flow in regions with low baseline flow in patients with vasospasm following subarachnoid hemorrhage. J Neurosurg. 2005;103:25–30.

    Article  PubMed  Google Scholar 

  43. Joseph M, Ziadi S, Nates J, Dannenbaum M, Malkoff M. Increases in cardiac output can reverse flow deficits from vasospasm independent of blood pressure: a study using xenon computed tomographic measurement of cerebral blood flow. Neurosurgery. 2003;53:1044–51 discussion 51–2.

    Article  PubMed  Google Scholar 

  44. Zweifel C, Castellani G, Czosnyka M, et al. Continuous assessment of cerebral autoregulation with near-infrared spectroscopy in adults after subarachnoid hemorrhage. Stroke. 2010;41:1963–8.

    Article  PubMed  Google Scholar 

  45. Jaeger M, Soehle M, Schuhmann MU, Meixensberger J. Clinical significance of impaired cerebrovascular autoregulation after severe aneurysmal subarachnoid hemorrhage. Stroke. 2012;43:2097–101.

    Article  PubMed  Google Scholar 

  46. Auler JO Jr, Galas F, Hajjar L, Santos L, Carvalho T, Michard F. Online monitoring of pulse pressure variation to guide fluid therapy after cardiac surgery. Anesth Analg. 2008;106:1201–6 table of contents.

    Article  PubMed  Google Scholar 

  47. Michard F, Boussat S, Chemla D, et al. Relation between respiratory changes in arterial pulse pressure and fluid responsiveness in septic patients with acute circulatory failure. Am J Respir Crit Care Med. 2000;162:134–8.

    Article  CAS  PubMed  Google Scholar 

  48. Berkenstadt H, Margalit N, Hadani M, et al. Stroke volume variation as a predictor of fluid responsiveness in patients undergoing brain surgery. Anesth Analg. 2001;92:984–9.

    Article  CAS  PubMed  Google Scholar 

  49. Carrera E, Kurtz P, Badjatia N, et al. Cerebrovascular carbon dioxide reactivity and delayed cerebral ischemia after subarachnoid hemorrhage. Arch Neurol. 2010;67:434–9.

    PubMed  Google Scholar 

  50. Schmidt JM, Ko SB, Helbok R, et al. Cerebral perfusion pressure thresholds for brain tissue hypoxia and metabolic crisis after poor-grade subarachnoid hemorrhage. Stroke. 2011;42:1351–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Dhar R, Scalfani MT, Zazulia AR, Videen TO, Derdeyn CP, Diringer MN. Comparison of induced hypertension, fluid bolus, and blood transfusion to augment cerebral oxygen delivery after subarachnoid hemorrhage. J Neurosurg. 2012;116:648–56.

    Article  PubMed Central  PubMed  Google Scholar 

  52. Dhar R, Zazulia AR, Videen TO, Zipfel GJ, Derdeyn CP, Diringer MN. Red blood cell transfusion increases cerebral oxygen delivery in anemic patients with subarachnoid hemorrhage. Stroke. 2009;40:3039–44.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kiwon Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kurtz, P., Helbok, R., Ko, Sb. et al. Fluid Responsiveness and Brain Tissue Oxygen Augmentation After Subarachnoid Hemorrhage. Neurocrit Care 20, 247–254 (2014). https://doi.org/10.1007/s12028-013-9910-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12028-013-9910-6

Keywords

Navigation