Skip to main content
Log in

Regional Brain Injury on Conventional and Diffusion Weighted MRI is Associated with Outcome After Pediatric Cardiac Arrest

  • Original Article
  • Published:
Neurocritical Care Aims and scope Submit manuscript

Abstract

Background

To assess regional brain injury on magnetic resonance imaging (MRI) after pediatric cardiac arrest (CA) and to associate regional injury with patient outcome and effects of hypothermia therapy for neuroprotection.

Methods

We performed a retrospective chart review with prospective imaging analysis. Children between 1 week and 17 years of age who had a brain MRI in the first 2 weeks after CA without other acute brain injury between 2002 and 2008 were included. Brain MRI (1.5 T General Electric, Milwaukee, WI, USA) images were analyzed by 2 blinded neuroradiologists with adjudication; images were visually graded. Brain lobes, basal ganglia, thalamus, brain stem, and cerebellum were analyzed using T1, T2, and diffusion-weighted images (DWI).

Results

We examined 28 subjects with median age 1.9 years (IQR 0.4–13.0) and 19 (68 %) males. Increased intensity on T2 in the basal ganglia and restricted diffusion in the brain lobes were associated with unfavorable outcome (all P < 0.05). Therapeutic hypothermia had no effect on regional brain injury. Repeat brain MRI was infrequently performed but demonstrated evolution of lesions.

Conclusion

Children with lesions in the basal ganglia on conventional MRI and brain lobes on DWI within the first 2 weeks after CA represent a group with increased risk of poor outcome. These findings may be important for developing neuroprotective strategies based on regional brain injury and for evaluating response to therapy in interventional clinical trials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Young KD, Seidel JS. Pediatric cardiopulmonary resuscitation: a collective review. Ann Emerg Med. 1999;33:195–205.

    Article  PubMed  CAS  Google Scholar 

  2. Young KD, Gausche-Hill M, McClung CD, Lewis RJ. A prospective, population-based study of the epidemiology and outcome of out-of-hospital pediatric cardiopulmonary arrest. Pediatrics. 2004;114:157–64.

    Article  PubMed  Google Scholar 

  3. Nadkarni VM, Larkin GL, Peberdy MA, et al. First documented rhythm and clinical outcome from in-hospital cardiac arrest among children and adults. JAMA. 2006;295:50–7.

    Article  PubMed  CAS  Google Scholar 

  4. Meaney PA, Nadkarni VM, Cook EF, et al. Higher survival rates among younger patients after pediatric intensive care unit cardiac arrests. Pediatrics. 2006;118:2424–33.

    Article  PubMed  Google Scholar 

  5. Rutherford M, Pennock J, Schwieso J, Cowan F, Dubowitz L. Hypoxic-ischaemic encephalopathy: early and late magnetic resonance imaging findings in relation to outcome. Arch Dis Child Fetal Neonatal Ed. 1996;75:F145–51.

    Article  PubMed  CAS  Google Scholar 

  6. Chau V, Poskitt KJ, Sargent MA, et al. Comparison of computer tomography and magnetic resonance imaging scans on the third day of life in term newborns with neonatal encephalopathy. Pediatrics. 2009;123:319–26.

    Article  PubMed  Google Scholar 

  7. Christophe C, Fonteyne C, Ziereisen F, et al. Value of MR imaging of the brain in children with hypoxic coma. AJNR Am J Neuroradiol. 2002;23:716–23.

    PubMed  Google Scholar 

  8. Dubowitz DJ, Bluml S, Arcinue E, Dietrich RB. MR of hypoxic encephalopathy in children after near drowning: correlation with quantitative proton MR spectroscopy and clinical outcome. AJNR Am J Neuroradiol. 1998;19:1617–27.

    PubMed  CAS  Google Scholar 

  9. American Heart Association. 2005 American Heart Association (AHA) guidelines for cardiopulmonary resuscitation (CPR) and emergency cardiovascular care (ECC) of pediatric and neonatal patients: pediatric advanced life support. Pediatrics. 2006;117:e1005–28.

    Article  Google Scholar 

  10. Neumar RW, Nolan JP, Adrie C, et al. Post-cardiac arrest syndrome: epidemiology, pathophysiology, treatment, and prognostication. A consensus statement from the International Liaison Committee on Resuscitation (American Heart Association, Australian and New Zealand Council on Resuscitation, European Resuscitation Council, Heart and Stroke Foundation of Canada, InterAmerican Heart Foundation, Resuscitation Council of Asia, and the Resuscitation Council of Southern Africa); the American Heart Association Emergency Cardiovascular Care Committee; the Council on Cardiovascular Surgery and Anesthesia; the Council on Cardiopulmonary, Perioperative, and Critical Care; the Council on Clinical Cardiology; and the Stroke Council. Circulation. 2008;118:2452–2483.

  11. Gluckman PD, Wyatt JS, Azzopardi D, et al. Selective head cooling with mild systemic hypothermia after neonatal encephalopathy: multicentre randomised trial. Lancet. 2005;365:663–70.

    PubMed  Google Scholar 

  12. Shankaran S, Laptook AR, Ehrenkranz RA, et al. Whole-body hypothermia for neonates with hypoxic-ischemic encephalopathy. N Engl J Med. 2005;353:1574–84.

    Article  PubMed  CAS  Google Scholar 

  13. Bernard SA, Gray TW, Buist MD, et al. Treatment of comatose survivors of out-of-hospital cardiac arrest with induced hypothermia. N Engl J Med. 2002;346:557–63.

    Article  PubMed  Google Scholar 

  14. Hypothermia After Cardiac Arrest Study Group. Mild therapeutic hypothermia to improve the neurologic outcome after cardiac arrest. N Engl J Med. 2002;346:549–56.

    Article  Google Scholar 

  15. Moler FW, Meert K, Donaldson AE, et al. In-hospital versus out-of-hospital pediatric cardiac arrest: a multicenter cohort study. Crit Care Med. 2009;37:2259–67.

    Article  PubMed  Google Scholar 

  16. Inder TE, Hunt RW, Morley CJ, et al. Randomized trial of systemic hypothermia selectively protects the cortex on MRI in term hypoxic-ischemic encephalopathy. J Pediatr. 2004;145:835–7.

    Article  PubMed  Google Scholar 

  17. Rutherford MA, Azzopardi D, Whitelaw A, et al. Mild hypothermia and the distribution of cerebral lesions in neonates with hypoxic-ischemic encephalopathy. Pediatrics. 2005;116:1001–6.

    Article  PubMed  Google Scholar 

  18. Rutherford M, Ramenghi LA, Edwards AD, et al. Assessment of brain tissue injury after moderate hypothermia in neonates with hypoxic-ischaemic encephalopathy: a nested substudy of a randomised controlled trial. Lancet Neurol. 2010;9:39–45.

    Article  PubMed  Google Scholar 

  19. Thoresen M, Hellstrom-Westas L, Liu X, de Vries LS. Effect of hypothermia on amplitude-integrated electroencephalogram in infants with asphyxia. Pediatrics. 2010;126:e131–9.

    Article  PubMed  Google Scholar 

  20. Fink EL, Clark RS, Kochanek PM, Bell MJ, Watson RS. A tertiary care center’s experience with therapeutic hypothermia after pediatric cardiac arrest. Pediatr Crit Care Med. 2010;11:66–74.

    Article  PubMed  Google Scholar 

  21. McQuillen PS, Barkovich AJ, Hamrick SE, et al. Temporal and anatomic risk profile of brain injury with neonatal repair of congenital heart defects. Stroke. 2007;38:736–41.

    Article  PubMed  Google Scholar 

  22. Ebisu T, Naruse S, Horikawa Y, et al. Discrimination between different types of white matter edema with diffusion-weighted MR imaging. J Magn Reson Imaging. 1993;3:863–8.

    Article  PubMed  CAS  Google Scholar 

  23. Le Bihan D, Poupon C, Amadon A, Lethimonnier F. Artifacts and pitfalls in diffusion MRI. J Magn Reson Imaging. 2006;24:478–88.

    Article  PubMed  Google Scholar 

  24. Jennet B, Teasdale G, Braakman R, Minderhoud J, Knill-Jones R. Predicting outcome in individual patients after severe head injury. Lancet. 1976;1:1031–4.

    Article  Google Scholar 

  25. Mattson MP, Guthrie PB, Kater SB. Intrinsic factors in the selective vulnerability of hippocampal pyramidal neurons. Prog Clin Biol Res. 1989;317:333–51.

    PubMed  CAS  Google Scholar 

  26. Fink EL, Alexander H, Marco CD, et al. An experimental model of pediatric asphyxial cardiopulmonary arrest in rats. Pediatr Crit Care Med. 2004;5:139–44.

    Article  PubMed  Google Scholar 

  27. Liu CL, Siesjo BK, Hu BR. Pathogenesis of hippocampal neuronal death after hypoxia–ischemia changes during brain development. Neuroscience. 2004;127:113–23.

    Article  PubMed  CAS  Google Scholar 

  28. Niwa T, Aida N, Shishikura A, Fujita K, Inoue T. Susceptibility-weighted imaging findings of cortical laminar necrosis in pediatric patients. AJNR Am J Neuroradiol. 2008;29:1795–8.

    Article  PubMed  CAS  Google Scholar 

  29. Kinoshita T, Ogawa T, Yoshida Y, Tamura H, Kado H, Okudera T. Curvilinear T1 hyperintense lesions representing cortical necrosis after cerebral infarction. Neuroradiology. 2005;47:647–51.

    Article  PubMed  Google Scholar 

  30. Martin LJ, Brambrink A, Koehler RC, Traystman RJ. Primary sensory and forebrain motor systems in the newborn brain are preferentially damaged by hypoxia–ischemia. J Comp Neurol. 1997;377:262–85.

    Article  PubMed  CAS  Google Scholar 

  31. Forder JP, Tymianski M. Postsynaptic mechanisms of excitotoxicity: involvement of postsynaptic density proteins, radicals, and oxidant molecules. Neuroscience. 2009;158:293–300.

    Article  PubMed  CAS  Google Scholar 

  32. Ye H, Jalini S, Zhang L, Charlton M, Carlen PL. Early ischemia enhances action potential-dependent, spontaneous glutamatergic responses in CA1 neurons. J Cereb Blood Flow Metab. 2010;30:555–65.

    Article  PubMed  CAS  Google Scholar 

  33. Nguyen V, McQuillen PS. AMPA and metabotropic excitoxicity explain subplate neuron vulnerability. Neurobiol Dis. 2010;37:195–207.

    Article  PubMed  CAS  Google Scholar 

  34. Guerguerian AM, Brambrink AM, Traystman RJ, Huganir RL, Martin LJ. Altered expression and phosphorylation of N-methyl-d-aspartate receptors in piglet striatum after hypoxia–ischemia. Brain Res Mol Brain Res. 2002;104:66–80.

    Article  PubMed  CAS  Google Scholar 

  35. Arbelaez A, Castillo M, Mukherji SK. Diffusion-weighted MR imaging of global cerebral anoxia. AJNR Am J Neuroradiol. 1999;20:999–1007.

    PubMed  CAS  Google Scholar 

  36. Mlynash M, Campbell DM, Leproust EM, Fischbein NJ, Bammer R, Eyngorn I, Hsia AW, Moseley M, Wijman CA. Temporal and spatial profile of brain diffusion-weighted MRI after cardiac arrest. Stroke. 2010;41:1665–72.

    Article  PubMed  Google Scholar 

  37. Leppert IR, Almli CR, McKinstry RC, et al. T(2) relaxometry of normal pediatric brain development. J Magn Reson Imaging. 2009;29:258–67.

    Article  PubMed  Google Scholar 

  38. Pfefferbaum A, Mathalon DH, Sullivan EV, Rawles JM, Zipursky RB, Lim KO. A quantitative magnetic resonance imaging study of changes in brain morphology from infancy to late adulthood. Arch Neurol. 1994;51:874–87.

    Article  PubMed  CAS  Google Scholar 

  39. Engelbrecht V, Scherer A, Rassek M, Witsack HJ, Modder U. Diffusion-weighted MR imaging in the brain in children: findings in the normal brain and in the brain with white matter diseases. Radiology. 2002;222:410–8.

    Article  PubMed  Google Scholar 

  40. Vannucci RC, Towfighi J, Vannucci SJ. Secondary energy failure after cerebral hypoxia–ischemia in the immature rat. J Cereb Blood Flow Metab. 2004;24:1090–7.

    Article  PubMed  CAS  Google Scholar 

  41. Nakajima W, Ishida A, Lange MS, et al. Apoptosis has a prolonged role in the neurodegeneration after hypoxic ischemia in the newborn rat. J Neurosci. 2000;20:7994–8004.

    PubMed  CAS  Google Scholar 

  42. Northington FJ, Ferriero DM, Graham EM, Traystman RJ, Martin LJ. Early neurodegeneration after hypoxia–ischemia in neonatal rat is necrosis while delayed neuronal death is apoptosis. Neurobiol Dis. 2001;8:207–19.

    Article  PubMed  CAS  Google Scholar 

  43. Zhu C, Wang X, Huang Z, et al. Apoptosis-inducing factor is a major contributor to neuronal loss induced by neonatal cerebral hypoxia–ischemia. Cell Death Differ. 2007;14:775–84.

    Article  PubMed  CAS  Google Scholar 

  44. Andrews PJ, Piper IR, Dearden NM, Miller JD. Secondary insults during intrahospital transport of head-injured patients. Lancet. 1990;335:327–30.

    Article  PubMed  CAS  Google Scholar 

  45. Maneru C, Junque C, Salgado-Pineda P, et al. Corpus callosum atrophy in adolescents with antecedents of moderate perinatal asphyxia. Brain Inj. 2003;17:1003–9.

    Article  PubMed  Google Scholar 

  46. Hayasaki K, Marmarou A, Barzo P, Fatouros P, Corwin F. Detection of brain atrophy following traumatic brain injury using gravimetric techniques. Acta Neurochir Suppl. 1997;70:75–7.

    PubMed  CAS  Google Scholar 

  47. Siren AL, Radyushkin K, Boretius S, et al. Global brain atrophy after unilateral parietal lesion and its prevention by erythropoietin. Brain. 2006;129:480–9.

    Article  PubMed  Google Scholar 

  48. Tasker RC. Changes in white matter late after severe traumatic brain injury in childhood. Dev Neurosci. 2006;28:302–8.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The study’s sources of funding had no involvement in the study design, collection, analysis, and interpretation of data, writing of the manuscript or in the decision to submit the manuscript for publication.

Funding

Fink: NINDS 1K23NS065132-01; NICHD 5K12HD047349-02; Fink, Landsittel: 1U54RR023506-04, University of Pittsburgh Clinical and Translational Science Institute; Clark: R01-HD045968.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ericka L. Fink.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fink, E.L., Panigrahy, A., Clark, R.S.B. et al. Regional Brain Injury on Conventional and Diffusion Weighted MRI is Associated with Outcome After Pediatric Cardiac Arrest. Neurocrit Care 19, 31–40 (2013). https://doi.org/10.1007/s12028-012-9706-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12028-012-9706-0

Keywords

Navigation