Skip to main content

Advertisement

Log in

Poor Correlation Between Perihematomal MRI Hyperintensity and Brain Swelling After Intracerebral Hemorrhage

  • Original Article
  • Published:
Neurocritical Care Aims and scope Submit manuscript

Abstract

Background and Purpose

The perihematomal hyperintensity (PHH) is commonly interpreted to represent cerebral edema following intracerebral hemorrhage (ICH), but the accuracy of this interpretation is unknown. We therefore investigated the relationship between the changes in PHH and the changes in hemispheric brain volume as a measure of edema during the first week after ICH.

Methods

Fifteen individuals aged 66 ± 13 with baseline hematoma size of 13.1 ml (range 3–43) were prospectively studied with sequential MRI 1.0 ± 0.5, 2.6 ± 0.9, and 6.5 ± 1.0 days after spontaneous supratentorial ICH. Changes in hemispheric brain volume were assessed on MPRAGE using the Brain-Boundary Shift Integral (BBSI). Hematoma and PHH volumes were measured on T2-weighted images.

Results

Brain volume increased a small but statistically significant amount (6.3 ± 8.0 ml, 0.6 ± 0.7%) between the first and second scans relative to 10 normal controls (−0.9 ± 4.1 ml, P = 0.02) and returned toward baseline at the third scan (1.5 ± 9.5 ml vs. controls 0.9 ± 4.0 ml, P = 0.85). There were no significant differences in the volume changes between the two hemispheres at scan 2 or scan 3. At both scan 2 (P = 0.04) and scan 3 (P = 0.004), the change in PHH was significantly greater than and poorly correlated with the change in ipsilateral hemispheric volume. There were no significant correlations between the change in NIH Stroke Scale (NIHSS) and the change in PHH, ipsilateral, or total brain volume at scan 2 or scan 3 (all P > 0.05).

Conclusions

In patients with small-to-moderate-sized hematomas, change in PHH was a poor measure of brain edema in the first week following ICH. A small degree of bihemispheric brain swelling occurred, but was of little clinical significance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Arima H, Wang JG, Huang Y, Heeley E, Skulina C, Parsons MW, Peng B, Li Q, Su S, Tao QL, Li YC, Jiang JD, Tai LW, Zhang JL, Xu E, Cheng Y, Morgenstern LB, Chalmers J, Anderson CS. Significance of perihematomal edema in acute intracerebral hemorrhage: the INTERACT trial. Neurology. 2009;73:1963–8.

    Article  PubMed  CAS  Google Scholar 

  2. Inaji M, Tomita H, Tone O, Tamaki M, Suzuki R, Ohno K. Chronological changes of perihematomal edema of human intracerebral hematoma. Acta Neurochir Suppl. 2003;86:445–8.

    Article  PubMed  CAS  Google Scholar 

  3. Mayer SA, Sacco RL, Shi T, Mohr JP. Neurologic deterioration in noncomatose patients with supratentorial intracerebral hemorrhage. Neurology. 1994;44:1379–84.

    PubMed  CAS  Google Scholar 

  4. Gebel JM Jr, Jauch EC, Brott TG, Khoury J, Sauerbeck L, Salisbury S, Spilker J, Tomsick TA, Duldner J, Broderick JP. Relative edema volume is a predictor of outcome in patients with hyperacute spontaneous intracerebral hemorrhage. Stroke. 2002;33:2636–41.

    Article  PubMed  Google Scholar 

  5. Zazulia AR, Diringer MN, Derdeyn CP, Powers WJ. Progression of mass effect after intracerebral hemorrhage. Stroke. 1999;30:1167–73.

    Article  PubMed  CAS  Google Scholar 

  6. Elijovich L, Patel PV, Hemphill JC III. Intracerebral hemorrhage. Semin Neurol. 2008;28:657–67.

    Article  PubMed  Google Scholar 

  7. Elliott J, Smith M. The acute management of intracerebral hemorrhage: a clinical review. Anesth Analg. 2010;110:1419–27.

    Article  PubMed  Google Scholar 

  8. Adeoye O, Broderick JP. Advances in the management of intracerebral hemorrhage. Nat Rev Neurol. 2010;6:593–601.

    Article  PubMed  CAS  Google Scholar 

  9. Sansing LH, Kaznatcheeva EA, Perkins CJ, Komaroff E, Gutman FB, Newman GC. Edema after intracerebral hemorrhage: correlations with coagulation parameters and treatment. J Neurosurg. 2003;98:985–92.

    Article  PubMed  Google Scholar 

  10. Wagner KR, Xi G, Hua Y, Kleinholz M, de Courten-Myers GM, Myers RE, Broderick JP, Brott TG. Lobar intracerebral hemorrhage model in pigs: rapid edema development in perihematomal white matter. Stroke. 1996;27:490–7.

    Article  PubMed  CAS  Google Scholar 

  11. Lee KR, Kawai N, Kim S, Sagher O, Hoff JT. Mechanisms of edema formation after intracerebral hemorrhage: effects of thrombin on cerebral blood flow, blood-brain barrier permeability, and cell survival in a rat model. J Neurosurg. 1997;86:272–8.

    Article  PubMed  CAS  Google Scholar 

  12. Keep RF, Xiang J, Ennis SR, Andjelkovic A, Hua Y, Xi G, Hoff JT. Blood–brain barrier function in intracerebral hemorrhage. Acta Neurochir Suppl. 2008;105:73–7.

    Article  PubMed  CAS  Google Scholar 

  13. Broderick JP, Brott TG, Duldner JE, Tomsick T, Huster G. Volume of intracerebral hemorrhage. A powerful and easy-to-use predictor of 30-day mortality. Stroke. 1993;24:987–93.

    Article  PubMed  CAS  Google Scholar 

  14. Kendall BE, Radue EW. Computed tomography in spontaneous intracerebral haematomas. Br J Radiol. 1978;51:563–73.

    Article  PubMed  CAS  Google Scholar 

  15. Olivot JM, Mlynash M, Kleinman JT, Straka M, Venkatasubramanian C, Bammer R, Moseley ME, Albers GW, Wijman CA. MRI profile of the perihematomal region in acute intracerebral hemorrhage. Stroke. 2010;41:2681–3.

    Article  PubMed  Google Scholar 

  16. Fox NC, Freeborough PA. Brain atrophy progression measured from registered serial MRI: validation and application to Alzheimer’s disease. J Magn Reson Imaging. 1997;7:1069–75.

    Article  PubMed  CAS  Google Scholar 

  17. Videen TO, Zazulia AR, Manno EM, Derdeyn CP, Adams RE, Diringer MN, Powers WJ. Mannitol bolus preferentially shrinks non-infarcted brain in patients with ischemic stroke. Neurology. 2001;57:2120–2.

    PubMed  CAS  Google Scholar 

  18. Woods RP, Cherry SR, Mazziotta JC. Rapid automated algorithm for aligning and reslicing PET images. J Comput Assist Tomogr. 1992;16:620–33.

    Article  PubMed  CAS  Google Scholar 

  19. Freeborough PA, Woods RP, Fox NC. Accurate registration of serial 3D MR brain images and its application to visualizing change in neurodegenerative disorders. J Comput Assist Tomogr. 1996;20:1012–22.

    Article  PubMed  CAS  Google Scholar 

  20. Alemany RM, Stenborg A, Sonninen P, Terent A, Raininko R. Detection and appearance of intraparenchymal haematomas of the brain at 1.5 T with spin-echo, FLAIR and GE sequences: poor relationship to the age of the haematoma. Neuroradiology. 2004;46:435–43.

    Google Scholar 

  21. Ruscalleda J, Peiro A. Prognostic factors in intraparenchymatous hematoma with ventricular hemorrhage. Neuroradiology. 1968;28:34–7.

    Article  Google Scholar 

  22. Knudsen KA, Rosand J, Karluk D, Greenberg SM. Clinical diagnosis of cerebral amyloid angiopathy: validation of the Boston criteria. Neurology. 2001;56:537–9.

    PubMed  CAS  Google Scholar 

  23. Fishman RA. Brain edema. N Engl J Med. 1975;293:706–11.

    Article  PubMed  CAS  Google Scholar 

  24. Duning T, Kloska S, Steinstrater O, Kugel H, Heindel W, Knecht S. Dehydration confounds the assessment of brain atrophy. Neurology. 2005;64:548–50.

    Article  PubMed  CAS  Google Scholar 

  25. Yang GY, Betz AL, Chenevert TL, Brunberg JA, Hoff JT. Experimental intracerebral hemorrhage: relationship between brain edema, blood flow, and blood–brain barrier permeability in rats. J Neurosurg. 1994;81:93–102.

    Article  PubMed  CAS  Google Scholar 

  26. Xing L, Lee TY, Tamm A, Emery D, Jeerakathil T, Butcher K. Blood:brain barrier permeability is diffusely elevated in primary intracerebral hemorrhage [abstract 40]. Stroke. 2010;41:e200–53.

    Article  Google Scholar 

  27. Powers WJ. Intracerebral hemorrhage and head trauma: common effects and common mechanisms of injury. Stroke. 2010;41:S107–10.

    Article  PubMed  Google Scholar 

  28. Suga S, Sato S, Yunoki K, Mihara B. Sequential change of brain edema by semiquantitative measurement on MRI in patients with hypertensive intracerebral hemorrhage. Acta Neurochir Suppl (Wien). 1994;60:564–7.

    CAS  Google Scholar 

  29. Jauch E, Gebel J, Salisbury S, Broderick J, Brott T, Kothari R, Tomsick T, Pancioli A, Barsan W. Lack of association between early edema and outcome in spontaneous intracerebral hemorrhage. Stroke. 1999;30:249.

    Google Scholar 

  30. Preboske GM, Gunter JL, Ward CP, Jack CR Jr. Common MRI acquisition non-idealities significantly impact the output of the boundary shift integral method of measuring brain atrophy on serial MRI. Neuroimage. 2006;30:1196–202.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Angela Shackleford, R.N., and the NNICU nurses for their help in performing the MRI studies. This study was supported by NIH (NS35966 and NS044885) and the H. Houston Merritt Distinguished Professorship of Neurology at the University of North Carolina at Chapel Hill.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Allyson R. Zazulia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zazulia, A.R., Videen, T.O., Diringer, M.N. et al. Poor Correlation Between Perihematomal MRI Hyperintensity and Brain Swelling After Intracerebral Hemorrhage. Neurocrit Care 15, 436–441 (2011). https://doi.org/10.1007/s12028-011-9578-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12028-011-9578-8

Keywords

Navigation