Skip to main content

Advertisement

Log in

Consistent Changes in Intracranial Pressure Waveform Morphology Induced by Acute Hypercapnic Cerebral Vasodilatation

  • Original Article
  • Published:
Neurocritical Care Aims and scope Submit manuscript

Abstract

Background

Intracranial pressure (ICP) remains a pivotal physiological signal for managing brain injury and subarachnoid hemorrhage (SAH) patients in neurocritical care units. Given the vascular origin of the ICP, changes in ICP waveform morphology could be used to infer cerebrovascular changes. Clinical validation of this association in the setting of brain trauma, and SAH is challenging due to the multi-factorial influences on, and uncertainty of, the state of the cerebral vasculature.

Methods

To gain a more controlled setting, in this articel, we study ICP signals recorded in four uninjured patients undergoing a CO2 inhalation challenge in which hypercapnia induced acute cerebral vasodilatation. We apply our morphological clustering and analysis of intracranial pressure (MOCAIP) algorithm to identify six landmarks on individual ICP pulses (based on the three established ICP sub-peaks; P1, P2, and P3) and extract 128 ICP morphological metrics. Then by comparing baseline, test, and post-test data, we assess the consistency and rate of change for each individual metric.

Results

Acute vasodilatation causes consistent changes in a total of 72 ICP pulse morphological metrics and the P2 sub-region responds to cerebral vascular changes in the most consistent way with the greatest change as compared to P1 and P3 sub-regions.

Conclusions

Since the dilation/constriction of the cerebral vasculature resulted in detectable consistent changes in ICP MOCIAP metrics, by an extended monitoring practice of ICP that includes characterizing ICP pulse morphology, one can potentially detect cerebrovascular changes, continuously, for patients under neurocritical care.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Rao V, Lyketsos C. Neuropsychiatric sequelae of traumatic brain injury. Psychosomatics. 2000;41(2):95–103.

    Article  PubMed  CAS  Google Scholar 

  2. Brown AW, Elovic EP, Kothari S, Flanagan SR, Kwasnica C. Congenital and acquired brain injury. 1. Epidemiology, pathophysiology, prognostication, innovative treatments, and prevention. Arch Phys Med Rehabil. 2008;89(3 Suppl 1):S3–8.

    Article  PubMed  Google Scholar 

  3. Fan JY, Kirkness C, Vicini P, Burr R, Mitchell P. Intracranial pressure waveform morphology and intracranial adaptive capacity. Am J Crit Care. 2008;17(6):545–54.

    PubMed  Google Scholar 

  4. North B. Itracranial pressure monitoring. In: Reilly P, Bullock R, editors. Head injury: pathophysiology and management. Landon: Chapman & Hall Medical; 1997. p. 209–16.

    Google Scholar 

  5. March K, Mitchell P, Grady S, Winn R. Effect of backrest position on intracranial and cerebral perfusion pressures. J Neurosci Nurs. 1990;22(6):375–81.

    Article  PubMed  CAS  Google Scholar 

  6. Muwaswes M. Increased intracranial pressure and its systemic effects. Journal of neurosurgical nursing. 1985;17(4):238–43.

    Article  PubMed  CAS  Google Scholar 

  7. Germon K. Interpretation of ICP pulse waves to determine intracerebral compliance. J Neurosci Nurs. 1988;20(6):344–51.

    Article  PubMed  CAS  Google Scholar 

  8. Cardoso ER, Rowan JO, Galbraith S. Analysis of the cerebrospinal-fluid pulse-wave in intracranial-pressure. J Neurosurg. 1983;59(5):817–21.

    Article  PubMed  CAS  Google Scholar 

  9. Miller JD, Peeler DF, Pattisapu J, Parent AD. Supratentorial pressures. Part I: differential intracranial pressures. Neurol Res. 1987;9(3):193–7.

    PubMed  CAS  Google Scholar 

  10. Avezaat CJ, van Eijndhoven JH, Wyper DJ. Cerebrospinal fluid pulse pressure and intracranial volume-pressure relationships. J Neurol Neurosurg Psychiatry. 1979;42(8):687–700.

    Article  PubMed  CAS  Google Scholar 

  11. Gega A, Utsumi S, Iida Y, Iida N, Tsuneda S. Analysis of the wave pattern of CSF pulse wave. In: Schulman K, Marmarou A, Miller J, editors. Intracranial Pressure. New York: Springer-Verlag; 1980. p. 188–90.

    Google Scholar 

  12. Czosnyka M, Pickard JD. Monitoring and interpretation of intracranial pressure. J Neurol Neurosurg Psychiatry. 2004;75(6):813–21.

    Article  PubMed  CAS  Google Scholar 

  13. Hu X, Xu P, Scalzo F, Vespa P, Bergsneider M. Morphological clustering and analysis of continuous intracranial pressure. IEEE Trans Biomed Eng. 2009;56(3):696–705.

    Article  PubMed  Google Scholar 

  14. Hu X, Glenn T, Scalzo F et al. Intracranial pressure pulse morphological features improved detection of decreased cerebral blood flow. Physiological measurement. 2010;31(5):679–95.

    Google Scholar 

  15. Hu X, Xu P, Asgari S, Paul V, Bergsneider M. Forecasting ICP elevation based on prescient changes of intracranial pressure waveform morphology. IEEE Trans Biomed Eng. 2010;57(5):1070–8.

    Article  PubMed  Google Scholar 

  16. Hamilton R, Xu P, Asgari S, et al. Forecasting intracranial pressure elevation using pulse waveform morphology. Conf Proc IEEE Eng Med Biol Soc. 2009;2009:4331–4.

    PubMed  Google Scholar 

  17. Kasprowicz M, Asgari S, Bergsneider M, Czosnyka M, Hamilton R, Hu X. Pattern recognition of overnight intracranial pressure slow waves using morphological features of intracranial pressure pulse. J Neurosci Methods. 2010;190(2):310–8.

    Article  PubMed  Google Scholar 

  18. Lavinio A, Rasulo FA, De Peri E, Czosnyka M, Latronico N. The relationship between the intracranial pressure-volume index and cerebral autoregulation. Intensive Care Med. 2009;35(3):546–9.

    Article  PubMed  CAS  Google Scholar 

  19. Hiler M, Czosnyka M, Hutchinson P, et al. Predictive value of initial computerized tomography scan, intracranial pressure, and state of autoregulation in patients with traumatic brain injury. J Neurosurg. 2006;104(5):731–7.

    Article  PubMed  Google Scholar 

  20. Chan KH, Miller JD, Dearden NM, Andrews PJ, Midgley S. The effect of changes in cerebral perfusion pressure upon middle cerebral artery blood flow velocity and jugular bulb venous oxygen saturation after severe brain injury. J Neurosurg. 1992;77(1):55–61.

    Article  PubMed  CAS  Google Scholar 

  21. Czosnyka M, Guazzo E, Whitehouse M, et al. Significance of intracranial pressure waveform analysis after head injury. Acta Neurochir (Wien). 1996;138(5):531–41. (discussion 541–2).

    Article  CAS  Google Scholar 

  22. Nornes H, Aaslid R, Lindegaard KF. Intracranial pulse pressure dynamics in patients with intracranial hypertension. Acta Neurochir (Wien). 1977;38(3–4):177–86.

    Article  CAS  Google Scholar 

  23. Hu X, Xu P, Lee DJ, Vespa P, Baldwin K, Bergsneider M. An algorithm for extracting intracranial pressure latency relative to electrocardiogram R wave. Physiol Meas. 2008;29(4):459–71.

    Article  PubMed  Google Scholar 

  24. Afonso VX, Tompkins WJ, Nguyen TQ, Luo S. ECG beat detection using filter banks. IEEE Trans Biomed Eng. 1999;46(2):192–202.

    Article  PubMed  CAS  Google Scholar 

  25. Kaufman L, Rousseeuw PJ. Finding groups in data: an introduction to cluster analysis. New York: Wiley-Interscience; 2005.

    Google Scholar 

  26. Asgari S, Bergsneider M, Hu X. A robust approach toward recognizing valid arterial-blood-pressure pulses. IEEE Trans Inf Technol Biomed. 2010;14(1):166–72.

    Article  PubMed  Google Scholar 

  27. Asgari S, Xu P, Bergsneider M, Hu X. A subspace decomposition approach toward recognizing valid pulsatile signals. Physiol Meas. 2009;30(11):1211–25.

    Article  PubMed  Google Scholar 

  28. Scalzo F, Xu P, Asgari S, Bergsneider M, Hu X. Regression analysis for peak designation in pulsatile pressure signals. Med Biol Eng Comput. 2009;47(9):967–77.

    Article  PubMed  Google Scholar 

  29. Scalzo F, Asgari S, Kim S, Bergsneider M, Hu X. Robust peak recognition in intracranial pressure signals. BioMed Eng. 2010;9(1):61. doi:10.1186/1475-925X-9-61.

  30. Scalzo F, Kim S, Asgari S, Bergsneider M, Hu X. Nonparametric bayesian inference for morphological tracking of intracranial pressure signal. Artif Intell Med. 2010 (under revision).

  31. Yoshihara M, Bandoh K, Marmarou A. Cerebrovascular carbon dioxide reactivity assessed by intracranial pressure dynamics in severely head injured patients. J Neurosurg. 1995;82(3):386–93.

    Article  PubMed  CAS  Google Scholar 

  32. Hu X, Subudhi AW, Xu P, Asgari S, Roach RC, Bergsneider M. Inferring cerebrovascular changes from latencies of systemic and intracranial pulses: a model-based latency subtraction algorithm. J Cereb Blood Flow Metab. 2009;29(4):688–97.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work is partially supported by NS059797 and R01 awards NS054881 and NS066008.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao Hu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Asgari, S., Bergsneider, M., Hamilton, R. et al. Consistent Changes in Intracranial Pressure Waveform Morphology Induced by Acute Hypercapnic Cerebral Vasodilatation. Neurocrit Care 15, 55–62 (2011). https://doi.org/10.1007/s12028-010-9463-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12028-010-9463-x

Keywords

Navigation