Skip to main content

Unfractionated Heparin: Multitargeted Therapy for Delayed Neurological Deficits Induced by Subarachnoid Hemorrhage

Abstract

Aneurysmal subarachnoid hemorrhage (SAH) is associated with numerous “delayed neurological deficits” (DNDs) that have been attributed to multiple pathophysiological mechanisms, including ischemia, microthrombosis, free radical damage, inflammation, and vascular remodeling. To date, effective prophylactic therapy for SAH-induced DNDs has been elusive, due perhaps to the multiplicity of mechanisms involved that render typical, single-agent therapy seemingly futile. We hypothesized that heparin, which has multiple underappreciated salutary effects, might be useful as a multitargeted prophylactic agent against SAH-induced DNDs. We performed a comprehensive review of the literature to evaluate the potential utility of heparin in targeting the multiple pathophysiological mechanisms that have been identified as contributing to SAH-induced DNDs. Our literature review revealed that unfractionated heparin can potentially antagonize essentially all of the pathophysiological mechanisms known to be activated following SAH. Heparin binds >100 proteins, including plasma proteins, proteins released from platelets, cytokines, and chemokines. Also, heparin complexes with oxyhemoglobin, blocks the activity of free radicals including reactive oxygen species, antagonizes endothelin-mediated vasoconstriction, smooth muscle depolarization, and inflammatory, growth and fibrogenic responses. Our review suggests that the use of prophylactic heparin following SAH may warrant formal study.

This is a preview of subscription content, access via your institution.

References

  1. Bederson JB, Connolly ES Jr, Batjer HH, et al. Guidelines for the management of aneurysmal subarachnoid hemorrhage: a statement for healthcare professionals from a special writing group of the Stroke Council, American Heart Association. Stroke. 2009;40:994–1025.

    Article  PubMed  Google Scholar 

  2. Suarez JI, Tarr RW, Selman WR. Aneurysmal subarachnoid hemorrhage. N Engl J Med. 2006;354:387–96.

    Article  CAS  PubMed  Google Scholar 

  3. Macdonald RL, Pluta RM, Zhang JH. Cerebral vasospasm after subarachnoid hemorrhage: the emerging revolution. Nat Clin Pract Neurol. 2007;3:256–63.

    Article  CAS  PubMed  Google Scholar 

  4. Rothoerl RD, Ringel F. Molecular mechanisms of cerebral vasospasm following aneurysmal SAH. Neurol Res. 2007;29:636–42.

    Article  CAS  PubMed  Google Scholar 

  5. Provencio JJ, Vora N. Subarachnoid hemorrhage and inflammation: bench to bedside and back. Semin Neurol. 2005;25:435–44.

    Article  PubMed  Google Scholar 

  6. Kranc KR, Pyne GJ, Tao L, et al. Oxidative degradation of bilirubin produces vasoactive compounds. Eur J Biochem. 2000;267:7094–101.

    Article  CAS  PubMed  Google Scholar 

  7. Pyne-Geithman GJ, Caudell DN, Prakash P, et al. Glutathione peroxidase and subarachnoid hemorrhage: implications for the role of oxidative stress in cerebral vasospasm. Neurol Res. 2009;31:195–9.

    Article  CAS  PubMed  Google Scholar 

  8. Vergouwen MD, Vermeulen M, Coert BA, et al. Microthrombosis after aneurysmal subarachnoid hemorrhage: an additional explanation for delayed cerebral ischemia. J Cereb Blood Flow Metab. 2008;28:1761–70.

    Article  PubMed  Google Scholar 

  9. Stein SC, Levine JM, Nagpal S, et al. Vasospasm as the sole cause of cerebral ischemia: how strong is the evidence? Neurosurg Focus. 2006;21:E2.

    Article  PubMed  Google Scholar 

  10. Zhang ZD, Macdonald RL. Contribution of the remodeling response to cerebral vasospasm. Neurol Res. 2006;28:713–20.

    Article  PubMed  Google Scholar 

  11. Crowley RW, Medel R, Kassell NF, et al. New insights into the causes and therapy of cerebral vasospasm following subarachnoid hemorrhage. Drug Discov Today. 2008;13:254–60.

    Article  CAS  PubMed  Google Scholar 

  12. Hansen-Schwartz J. Cerebral vasospasm: a consideration of the various cellular mechanisms involved in the pathophysiology. Neurocrit Care. 2004;1:235–46.

    Article  CAS  PubMed  Google Scholar 

  13. Fergusen S, Macdonald RL. Predictors of cerebral infarction in patients with aneurysmal subarachnoid hemorrhage. Neurosurgery. 2007;60:658–67.

    Article  PubMed  Google Scholar 

  14. Lin CL, Jeng AY, Howng SL, et al. Endothelin and subarachnoid hemorrhage-induced cerebral vasospasm: pathogenesis and treatment. Curr Med Chem. 2004;11:1779–91.

    CAS  PubMed  Google Scholar 

  15. Zimmermann M, Seifert V. Endothelin and subarachnoid hemorrhage: an overview. Neurosurgery. 1998;43:863–75.

    Article  CAS  PubMed  Google Scholar 

  16. Zimmermann M, Seifert V. Endothelin receptor antagonists and cerebral vasospasm. Clin Auton Res. 2004;14:143–5.

    Article  PubMed  Google Scholar 

  17. Macdonald RL, Kassell NF, Mayer S, et al. Clazosentan to overcome neurological ischemia and infarction occurring after subarachnoid hemorrhage (CONSCIOUS-1): randomized, double-blind, placebo-controlled phase 2 dose-finding trial. Stroke. 2008;39:3015–21.

    Article  CAS  PubMed  Google Scholar 

  18. Deshaies EM, Boulos AS, Popp AJ. Peri-operative medical management of cerebral vasospasm. Neurol Res. 2009;31:644–50.

    Article  CAS  PubMed  Google Scholar 

  19. Otten ML, Mocco J, Connolly ES Jr, et al. A review of medical treatments of cerebral vasospasm. Neurol Res. 2008;30:444–9.

    Article  CAS  PubMed  Google Scholar 

  20. Casu B. Structure of heparin and heparin fragments. Ann N Y Acad Sci. 1989;556:1–17.

    Article  CAS  PubMed  Google Scholar 

  21. Kandrotas RJ. Heparin pharmacokinetics and pharmacodynamics. Clin Pharmacokinet. 1992;22:359–74.

    Article  CAS  PubMed  Google Scholar 

  22. Young E. The anti-inflammatory effects of heparin and related compounds. Thromb Res. 2008;122:743–52.

    Article  CAS  PubMed  Google Scholar 

  23. Hirsh J, Anand SS, Halperin JL, et al. Mechanism of action and pharmacology of unfractionated heparin. Arterioscler Thromb Vasc Biol. 2001;21:1094–6.

    Article  CAS  PubMed  Google Scholar 

  24. Gandhi NS, Mancera RL. The structure of glycosaminoglycans and their interactions with proteins. Chem Biol Drug Des. 2008;72:455–82.

    Article  CAS  PubMed  Google Scholar 

  25. Coombe DR. Biological implications of glycosaminoglycan interactions with haemopoietic cytokines. Immunol Cell Biol. 2008;86:598–607.

    Article  CAS  PubMed  Google Scholar 

  26. Mulloy B. The specificity of interactions between proteins and sulfated polysaccharides. An Acad Bras Cienc. 2005;77:651–64.

    CAS  PubMed  Google Scholar 

  27. Lindahl U, Lidholt K, Spillmann D, et al. More to “heparin” than anticoagulation. Thromb Res. 1994;75:1–32.

    Article  CAS  PubMed  Google Scholar 

  28. Amiconi G, Zolla L, Vecchini P, et al. The effect of macromolecular polyanions on the functional properties of human hemoglobin. Eur J Biochem. 1977;76:339–43.

    Article  CAS  PubMed  Google Scholar 

  29. Engelberg H. Actions of heparin that may affect the malignant process. Cancer. 1999;85:257–72.

    Article  CAS  PubMed  Google Scholar 

  30. Chansel D, Ciroldi M, Vandermeersch S, et al. Heparin binding EGF is necessary for vasospastic response to endothelin. FASEB J. 2006;20:1936–8.

    Article  CAS  PubMed  Google Scholar 

  31. Kuwahara-Watanabe K, Hidai C, Ikeda H, et al. Heparin regulates transcription of endothelin-1 gene in endothelial cells. J Vasc Res. 2005;42:183–9.

    Article  CAS  PubMed  Google Scholar 

  32. Yokokawa K, Mandal AK, Kohno M, et al. Heparin suppresses endothelin-1 action and production in spontaneously hypertensive rats. Am J Physiol. 1992;263:R1035–41.

    CAS  PubMed  Google Scholar 

  33. Elsayed E, Becker RC. The impact of heparin compounds on cellular inflammatory responses: a construct for future investigation and pharmaceutical development. J Thromb Thrombolysis. 2003;15:11–8.

    Article  CAS  PubMed  Google Scholar 

  34. Tyrrell DJ, Horne AP, Holme KR, et al. Heparin in inflammation: potential therapeutic applications beyond anticoagulation. Adv Pharmacol. 1999;46:151–208.

    Article  CAS  PubMed  Google Scholar 

  35. Higashiyama S, Iwabuki H, Morimoto C, et al. Membrane-anchored growth factors, the epidermal growth factor family: beyond receptor ligands. Cancer Sci. 2008;99:214–20.

    Article  CAS  PubMed  Google Scholar 

  36. Higashiyama S, Nanba D. ADAM-mediated ectodomain shedding of HB-EGF in receptor cross-talk. Biochim Biophys Acta. 2005;1751:110–7.

    CAS  PubMed  Google Scholar 

  37. Kalmes A, Daum G, Clowes AW. EGFR transactivation in the regulation of SMC function. Ann N Y Acad Sci. 2001;947:42–54.

    Article  CAS  PubMed  Google Scholar 

  38. Rider CC. Heparin/heparan sulphate binding in the TGF-beta cytokine superfamily. Biochem Soc Trans. 2006;34:458–60.

    Article  CAS  PubMed  Google Scholar 

  39. Kolias AG, Sen J, Belli A. Pathogenesis of cerebral vasospasm following aneurysmal subarachnoid hemorrhage: putative mechanisms and novel approaches. J Neurosci Res. 2009;87:1–11.

    Article  CAS  PubMed  Google Scholar 

  40. Hansen-Schwartz J, Vajkoczy P, Macdonald RL, et al. Cerebral vasospasm: looking beyond vasoconstriction. Trends Pharmacol Sci. 2007;28:252–6.

    Article  CAS  PubMed  Google Scholar 

  41. Sehba FA, Bederson JB. Mechanisms of acute brain injury after subarachnoid hemorrhage. Neurol Res. 2006;28:381–98.

    Article  CAS  PubMed  Google Scholar 

  42. Macdonald RL, Weir BK. A review of hemoglobin and the pathogenesis of cerebral vasospasm. Stroke. 1991;22:971–82.

    CAS  PubMed  Google Scholar 

  43. Asano T. Oxyhemoglobin as the principal cause of cerebral vasospasm: a holistic view of its actions. Crit Rev Neurosurg. 1999;9:303–18.

    Article  PubMed  Google Scholar 

  44. Tekkok IH, Tekkok S, Ozcan OE, et al. Preventive effect of intracisternal heparin for proliferative angiopathy after experimental subarachnoid haemorrhage in rats. Acta Neurochir (Wien). 1994;127:112–7.

    Article  CAS  Google Scholar 

  45. Macdonald RL, Weir B, Zhang J, et al. Adenosine triphosphate and hemoglobin in vasospastic monkeys. Neurosurg Focus. 1997;3:e3.

    Article  CAS  PubMed  Google Scholar 

  46. Macdonald RL, Marton LS, Andrus PK, et al. Time course of production of hydroxyl free radical after subarachnoid hemorrhage in dogs. Life Sci. 2004;75:979–89.

    Article  CAS  PubMed  Google Scholar 

  47. Sakaki S, Ohta S, Nakamura H, et al. Free radical reaction and biological defense mechanism in the pathogenesis of prolonged vasospasm in experimental subarachnoid hemorrhage. J Cereb Blood Flow Metab. 1988;8:1–8.

    CAS  PubMed  Google Scholar 

  48. Tosaka M, Hashiba Y, Saito N, et al. Contractile responses to reactive oxygen species in the canine basilar artery in vitro: selective inhibitory effect of MCI-186, a new hydroxyl radical scavenger. Acta Neurochir (Wien). 2002;144:1305–10.

    Article  CAS  Google Scholar 

  49. Clark JF, Sharp FR. Bilirubin oxidation products (BOXes) and their role in cerebral vasospasm after subarachnoid hemorrhage. J Cereb Blood Flow Metab. 2006;26:1223–33.

    Article  CAS  PubMed  Google Scholar 

  50. Engelberg H. Actions of heparin in the atherosclerotic process. Pharmacol Rev. 1996;48:327–52.

    CAS  PubMed  Google Scholar 

  51. Juvela S. Plasma endothelin concentrations after aneurysmal subarachnoid hemorrhage. J Neurosurg. 2000;92:390–400.

    Article  CAS  PubMed  Google Scholar 

  52. Kessler IM, Pacheco YG, Lozzi SP, et al. Endothelin-1 levels in plasma and cerebrospinal fluid of patients with cerebral vasospasm after aneurysmal subarachnoid hemorrhage. Surg Neurol. 2005;64(Suppl 1):S1–5.

    PubMed  Google Scholar 

  53. Ohkuma H, Parney I, Megyesi J, et al. Antisense preproendothelin-oligoDNA therapy for vasospasm in a canine model of subarachnoid hemorrhage. J Neurosurg. 1999;90:1105–14.

    Article  CAS  PubMed  Google Scholar 

  54. Chow M, Dumont AS, Kassell NF. Endothelin receptor antagonists and cerebral vasospasm: an update. Neurosurgery. 2002;51:1333–41.

    Article  PubMed  Google Scholar 

  55. Weyer GW, Nolan CP, Macdonald RL. Evidence-based cerebral vasospasm management. Neurosurg Focus. 2006;21:E8.

    Article  PubMed  Google Scholar 

  56. Reantragoon S, Arrigo LM, Dweck HS, et al. Suppression of endothelin-1 production in cultured human umbilical vein endothelial cells by heparin fractions separated by strong anion exchange chromatography. Arch Biochem Biophys. 1996;327:234–8.

    Article  CAS  PubMed  Google Scholar 

  57. Reantragoon S, Arrigo LM, Seoud MM, et al. Specific heparin fractions suppress endothelin-1 production in cultured human umbilical vein endothelial cells. Arch Biochem Biophys. 1994;314:315–22.

    Article  CAS  PubMed  Google Scholar 

  58. Alberts GF, Peifley KA, Johns A, et al. Constitutive endothelin-1 overexpression promotes smooth muscle cell proliferation via an external autocrine loop. J Biol Chem. 1994;269:10112–8.

    CAS  PubMed  Google Scholar 

  59. Hedin U, Daum G, Clowes AW. Heparin inhibits thrombin-induced mitogen-activated protein kinase signaling in arterial smooth muscle cells. J Vasc Surg. 1998;27:512–20.

    Article  CAS  PubMed  Google Scholar 

  60. Aihara Y, Jahromi BS, Yassari R, et al. Molecular profile of vascular ion channels after experimental subarachnoid hemorrhage. J Cereb Blood Flow Metab. 2004;24:75–83.

    Article  CAS  PubMed  Google Scholar 

  61. Weyer GW, Jahromi BS, Aihara Y, et al. Expression and function of inwardly rectifying potassium channels after experimental subarachnoid hemorrhage. J Cereb Blood Flow Metab. 2006;26:382–391.

    Article  CAS  PubMed  Google Scholar 

  62. Ishiguro M, Morielli AD, Zvarova K, et al. Oxyhemoglobin-induced suppression of voltage-dependent K+ channels in cerebral arteries by enhanced tyrosine kinase activity. Circ Res. 2006;99:1252–60.

    Article  CAS  PubMed  Google Scholar 

  63. Koide M, Penar PL, Tranmer BI, et al. Heparin-binding EGF-like growth factor mediates oxyhemoglobin-induced suppression of voltage-dependent potassium channels in rabbit cerebral artery myocytes. Am J Physiol Heart Circ Physiol. 2007;293:H1750–9.

    Article  CAS  PubMed  Google Scholar 

  64. Zubkov AY, Tibbs RE, Clower B, et al. Morphological changes of cerebral arteries in a canine double hemorrhage model. Neurosci Lett. 2002;326:137–41.

    Article  CAS  PubMed  Google Scholar 

  65. Ohkuma H, Tsurutani H, Suzuki S. Changes of beta-actin mRNA expression in canine vasospastic basilar artery after experimental subarachnoid hemorrhage. Neurosci Lett. 2001;311:9–12.

    Article  CAS  PubMed  Google Scholar 

  66. Ohkuma H, Suzuki S, Ogane K. Phenotypic modulation of smooth muscle cells and vascular remodeling in intraparenchymal small cerebral arteries after canine experimental subarachnoid hemorrhage. Neurosci Lett. 2003;344:193–6.

    Article  CAS  PubMed  Google Scholar 

  67. Macdonald RL, Weir BK, Young JD, et al. Cytoskeletal and extracellular matrix proteins in cerebral arteries following subarachnoid hemorrhage in monkeys. J Neurosurg. 1992;76:81–90.

    Article  CAS  PubMed  Google Scholar 

  68. Pluta RM, Zauner A, Morgan JK, et al. Is vasospasm related to proliferative arteriopathy? J Neurosurg. 1992;77:740–8.

    Article  CAS  PubMed  Google Scholar 

  69. Ivanov A, Gerzanich V, Ivanova S, et al. Adenylate cyclase 5 and KCa1.1 channel are required for EGFR up-regulation of PCNA in native contractile rat basilar artery smooth muscle. J Physiol. 2006;570:73–84.

    Article  CAS  PubMed  Google Scholar 

  70. Zubkov AY, Ogihara K, Tumu P, et al. Mitogen-activated protein kinase mediation of hemolysate-induced contraction in rabbit basilar artery. J Neurosurg. 1999;90:1091–7.

    Article  CAS  PubMed  Google Scholar 

  71. Aoki K, Zubkov AY, Tibbs RE, et al. Role of MAPK in chronic cerebral vasospasm. Life Sci. 2002;70:1901–8.

    Article  CAS  PubMed  Google Scholar 

  72. Satoh M, Parent AD, Zhang JH. Inhibitory effect with antisense mitogen-activated protein kinase oligodeoxynucleotide against cerebral vasospasm in rats. Stroke. 2002;33:775–81.

    Article  CAS  PubMed  Google Scholar 

  73. Zhang JH. Role of MAPK in cerebral vasospasm. Drug News Perspect. 2001;14:261–7.

    Article  CAS  PubMed  Google Scholar 

  74. Reynolds CM, Eguchi S, Frank GD, et al. Signaling mechanisms of heparin-binding epidermal growth factor-like growth factor in vascular smooth muscle cells. Hypertension. 2002;39:525–9.

    Article  CAS  PubMed  Google Scholar 

  75. Maeda Y, Hirano K, Hirano M, et al. Enhanced contractile response of the basilar artery to platelet-derived growth factor in subarachnoid hemorrhage. Stroke. 2009;40:591–6.

    Article  PubMed  Google Scholar 

  76. Raab G, Klagsbrun M. Heparin-binding EGF-like growth factor. Biochim Biophys Acta. 1997;1333:F179–99.

    CAS  PubMed  Google Scholar 

  77. Kawahara N, Mishima K, Higashiyama S, et al. The gene for heparin-binding epidermal growth factor-like growth factor is stress-inducible: its role in cerebral ischemia. J Cereb Blood Flow Metab. 1999;19:307–20.

    Article  CAS  PubMed  Google Scholar 

  78. Jin K, Mao XO, Sun Y, et al. Heparin-binding epidermal growth factor-like growth factor: hypoxia-inducible expression in vitro and stimulation of neurogenesis in vitro and in vivo. J Neurosci. 2002;22:5365–73.

    CAS  PubMed  Google Scholar 

  79. Borel CO, McKee A, Parra A, et al. Possible role for vascular cell proliferation in cerebral vasospasm after subarachnoid hemorrhage. Stroke. 2003;34:427–33.

    Article  CAS  PubMed  Google Scholar 

  80. Gaetani P, Tancioni F, Grignani G, et al. Platelet derived growth factor and subarachnoid haemorrhage: a study on cisternal cerebrospinal fluid. Acta Neurochir (Wien). 1997;139:319–24.

    Article  CAS  Google Scholar 

  81. Zhang Z, Nagata I, Kikuchi H, et al. Broad-spectrum and selective serine protease inhibitors prevent expression of platelet-derived growth factor-BB and cerebral vasospasm after subarachnoid hemorrhage: vasospasm caused by cisternal injection of recombinant platelet-derived growth factor-BB. Stroke. 2001;32:1665–72.

    CAS  PubMed  Google Scholar 

  82. Tsurutani H, Ohkuma H, Suzuki S. Effects of thrombin inhibitor on thrombin-related signal transduction and cerebral vasospasm in the rabbit subarachnoid hemorrhage model. Stroke. 2003;34:1497–500.

    Article  CAS  PubMed  Google Scholar 

  83. Mishra-Gorur K, Castellot JJ Jr. Heparin rapidly and selectively regulates protein tyrosine phosphorylation in vascular smooth muscle cells. J Cell Physiol. 1999;178:205–15.

    Article  CAS  PubMed  Google Scholar 

  84. Lee KS, Park JH, Lee S, et al. HB-EGF induces delayed STAT3 activation via NF-kappaB mediated IL-6 secretion in vascular smooth muscle cell. Biochim Biophys Acta. 2007;1773:1637–44.

    Article  CAS  PubMed  Google Scholar 

  85. Kalmes A, Vesti BR, Daum G, et al. Heparin blockade of thrombin-induced smooth muscle cell migration involves inhibition of epidermal growth factor (EGF) receptor transactivation by heparin-binding EGF-like growth factor. Circ Res. 2000;87:92–8.

    CAS  PubMed  Google Scholar 

  86. Okada T, Bark DH, Mayberg MR. Localized release of perivascular heparin inhibits intimal proliferation after endothelial injury without systemic anticoagulation. Neurosurgery. 1989;25:892–8.

    Article  CAS  PubMed  Google Scholar 

  87. Levine A, Kenet G, Bruck R, et al. Effect of heparin on tissue binding activity of fibroblast growth factor and heparin-binding epidermal growth factor in experimental colitis in rats. Pediatr Res. 2002;51:635–40.

    Article  CAS  PubMed  Google Scholar 

  88. Kawanabe Y, Masaki T, Hashimoto N. Involvement of epidermal growth factor receptor-protein tyrosine kinase transactivation in endothelin-1-induced vascular contraction. J Neurosurg. 2004;100:1066–71.

    Article  CAS  PubMed  Google Scholar 

  89. Pukac LA, Carter JE, Ottlinger ME, et al. Mechanisms of inhibition by heparin of PDGF stimulated MAP kinase activation in vascular smooth muscle cells. J Cell Physiol. 1997;172:69–78.

    Article  CAS  PubMed  Google Scholar 

  90. Kapp JP, Clower BR, Azar FM, et al. Heparin reduces proliferative angiopathy following subarachnoid hemorrhage in cats. J Neurosurg. 1985;62:570–5.

    Article  CAS  PubMed  Google Scholar 

  91. Dhar R, Diringer MN. The burden of the systemic inflammatory response predicts vasospasm and outcome after subarachnoid hemorrhage. Neurocrit Care. 2008;8:404–12.

    Article  PubMed  Google Scholar 

  92. Yoshimoto Y, Tanaka Y, Hoya K. Acute systemic inflammatory response syndrome in subarachnoid hemorrhage. Stroke. 2001;32:1989–93.

    Article  CAS  PubMed  Google Scholar 

  93. Dumont AS, Dumont RJ, Chow MM, et al. Cerebral vasospasm after subarachnoid hemorrhage: putative role of inflammation. Neurosurgery. 2003;53:123–33.

    Article  PubMed  Google Scholar 

  94. Gallia GL, Tamargo RJ. Leukocyte-endothelial cell interactions in chronic vasospasm after subarachnoid hemorrhage. Neurol Res. 2006;28:750–8.

    Article  CAS  PubMed  Google Scholar 

  95. Rothoerl RD, Axmann C, Pina AL, et al. Possible role of the C-reactive protein and white blood cell count in the pathogenesis of cerebral vasospasm following aneurysmal subarachnoid hemorrhage. J Neurosurg Anesthesiol. 2006;18:68–72.

    Article  PubMed  Google Scholar 

  96. Clatterbuck RE, Gailloud P, Ogata L, et al. Prevention of cerebral vasospasm by a humanized anti-CD11/CD18 monoclonal antibody administered after experimental subarachnoid hemorrhage in nonhuman primates. J Neurosurg. 2003;99:376–82.

    Article  CAS  PubMed  Google Scholar 

  97. Fassbender K, Hodapp B, Rossol S, et al. Inflammatory cytokines in subarachnoid haemorrhage: association with abnormal blood flow velocities in basal cerebral arteries. J Neurol Neurosurg Psychiatry. 2001;70:534–7.

    Article  CAS  PubMed  Google Scholar 

  98. Ono S, Date I, Onoda K, et al. Decoy administration of NF-kappaB into the subarachnoid space for cerebral angiopathy. Hum Gene Ther. 1998;9:1003–11.

    Article  CAS  PubMed  Google Scholar 

  99. Hein AM, O’Banion MK. Neuroinflammation and memory: the role of prostaglandins. Mol Neurobiol. 2009;40:15–32.

    Article  CAS  PubMed  Google Scholar 

  100. Skaper SD. The brain as a target for inflammatory processes and neuroprotective strategies. Ann N Y Acad Sci. 2007;1122:23–34.

    Article  CAS  PubMed  Google Scholar 

  101. Rosi S, Ramirez-Amaya V, Vazdarjanova A, et al. Neuroinflammation alters the hippocampal pattern of behaviorally induced Arc expression. J Neurosci. 2005;25:723–31.

    Article  CAS  PubMed  Google Scholar 

  102. Chen J, Buchanan JB, Sparkman NL, et al. Neuroinflammation and disruption in working memory in aged mice after acute stimulation of the peripheral innate immune system. Brain Behav Immun. 2008;22:301–11.

    Article  CAS  PubMed  Google Scholar 

  103. Hutter BO, Gilsbach JM, Kreitschmann I. Quality of life and cognitive deficits after subarachnoid haemorrhage. Br J Neurosurg. 1995;9:465–75.

    Article  CAS  PubMed  Google Scholar 

  104. Ljunggren B, Sonesson B, Saveland H, et al. Cognitive impairment and adjustment in patients without neurological deficits after aneurysmal SAH and early operation. J Neurosurg. 1985;62:673–9.

    Article  CAS  PubMed  Google Scholar 

  105. Ravnik J, Starovasnik B, Sesok S, et al. Long-term cognitive deficits in patients with good outcomes after aneurysmal subarachnoid hemorrhage from anterior communicating artery. Croat Med J. 2006;47:253–63.

    PubMed  Google Scholar 

  106. Goudeau JJ, Clermont G, Guillery O, et al. In high-risk patients, combination of antiinflammatory procedures during cardiopulmonary bypass can reduce incidences of inflammation and oxidative stress. J Cardiovasc Pharmacol. 2007;49:39–45.

    Article  CAS  PubMed  Google Scholar 

  107. Saliba MJ Jr. Heparin in the treatment of burns: a review. Burns. 2001;27:349–58.

    Article  PubMed  Google Scholar 

  108. Saliba MJ Jr. The effects and uses of heparin in the care of burns that improves treatment and enhances the quality of life. Acta Chir Plast. 1997;39:13–6.

    PubMed  Google Scholar 

  109. Papa A, Danese S, Gasbarrini A, et al. Review article: potential therapeutic applications and mechanisms of action of heparin in inflammatory bowel disease. Aliment Pharmacol Ther. 2000;14:1403–9.

    Article  CAS  PubMed  Google Scholar 

  110. Cervera A, Justicia C, Reverter JC, et al. Steady plasma concentration of unfractionated heparin reduces infarct volume and prevents inflammatory damage after transient focal cerebral ischemia in the rat. J Neurosci Res. 2004;77:565–72.

    Article  CAS  PubMed  Google Scholar 

  111. Chamorro A, Obach V, Vila N, et al. Comparison of the acute-phase response in patients with ischemic stroke treated with high-dose heparin or aspirin. J Neurol Sci. 2000;178:17–22.

    Article  CAS  PubMed  Google Scholar 

  112. Hochart H, Jenkins PV, Smith OP, et al. Low-molecular weight and unfractionated heparins induce a downregulation of inflammation: decreased levels of proinflammatory cytokines and nuclear factor-kappaB in LPS-stimulated human monocytes. Br J Haematol. 2006;133:62–7.

    Article  CAS  PubMed  Google Scholar 

  113. Le Brun G, Aubin P, Soliman H, et al. Upregulation of endothelin 1 and its precursor by IL-1beta, TNF-alpha, and TGF-beta in the PC3 human prostate cancer cell line. Cytokine. 1999;11:157–62.

    Article  CAS  PubMed  Google Scholar 

  114. Marsden PA, Brenner BM. Transcriptional regulation of the endothelin-1 gene by TNF-alpha. Am J Physiol. 1992;262:C854–61.

    CAS  PubMed  Google Scholar 

  115. McFadden G, Kelvin D. New strategies for chemokine inhibition and modulation: you take the high road and I’ll take the low road. Biochem Pharmacol. 1997;54:1271–80.

    Article  CAS  PubMed  Google Scholar 

  116. Sheikine Y, Hansson GK. Chemokines and atherosclerosis. Ann Med. 2004;36:98–118.

    Article  CAS  PubMed  Google Scholar 

  117. Yoshie O, Imai T, Nomiyama H. Chemokines in immunity. Adv Immunol. 2001;78:57–110.

    Article  CAS  PubMed  Google Scholar 

  118. Soehnlein O, Zernecke A, Eriksson EE, et al. Neutrophil secretion products pave the way for inflammatory monocytes. Blood. 2008;112:1461–71.

    Article  CAS  PubMed  Google Scholar 

  119. Ranjbaran H, Wang Y, Manes TD, et al. Heparin displaces interferon-gamma-inducible chemokines (IP-10, I-TAC, and Mig) sequestered in the vasculature and inhibits the transendothelial migration and arterial recruitment of T cells. Circulation. 2006;114:1293–300.

    Article  CAS  PubMed  Google Scholar 

  120. Chimowitz MI, Pessin MS. Is there a role for heparin in the management of complications of subarachnoid hemorrhage? Stroke. 1987;18:1169–72.

    CAS  PubMed  Google Scholar 

  121. Wang DZ, Futrell N, Taylon C, et al. Anticoagulation for prevention of cerebral infarcts following subarachnoid hemorrhage. Surg Neurol. 1995;44:270–4.

    Article  CAS  PubMed  Google Scholar 

  122. Kapp J, Neill WR, Salter JE, et al. Systemic heparin in the early management of ruptured intracranial aneurysms: review of 104 consecutive cases and comparison with concurrent controls. Neurosurgery. 1987;20:564–70.

    Article  CAS  PubMed  Google Scholar 

  123. Kapp JP, Neill WR, Neill CL, et al. The three phases of vasospasm. Surg Neurol. 1982;18:40–5.

    Article  CAS  PubMed  Google Scholar 

  124. Wurm G, Tomancok B, Nussbaumer K, et al. Reduction of ischemic sequelae following spontaneous subarachnoid hemorrhage: a double-blind, randomized comparison of enoxaparin versus placebo. Clin Neurol Neurosurg. 2004;106:97–103.

    Article  PubMed  Google Scholar 

  125. Juvela S, Siironen J, Varis J, et al. Risk factors for ischemic lesions following aneurysmal subarachnoid hemorrhage. J Neurosurg. 2005;102:194–201.

    Article  PubMed  Google Scholar 

  126. Siironen J, Juvela S, Varis J, et al. No effect of enoxaparin on outcome of aneurysmal subarachnoid hemorrhage: a randomized, double-blind, placebo-controlled clinical trial. J Neurosurg. 2003;99:953–9.

    Article  CAS  PubMed  Google Scholar 

  127. Khorana AA, Sahni A, Altland OD, et al. Heparin inhibition of endothelial cell proliferation and organization is dependent on molecular weight. Arterioscler Thromb Vasc Biol. 2003;23:2110–5.

    Article  CAS  PubMed  Google Scholar 

  128. Young E, Venner T, Ribau J, et al. The binding of unfractionated heparin and low molecular weight heparin to thrombin-activated human endothelial cells. Thromb Res. 1999;96:373–81.

    Article  CAS  PubMed  Google Scholar 

  129. Koenig A, Norgard-Sumnicht K, Linhardt R, et al. Differential interactions of heparin and heparan sulfate glycosaminoglycans with the selectins. Implications for the use of unfractionated and low molecular weight heparins as therapeutic agents. J Clin Invest. 1998;101:877–89.

    Article  CAS  PubMed  Google Scholar 

  130. Chan P, Mill S, Mulloy B, et al. Heparin inhibition of human vascular smooth muscle cell hyperplasia. Int Angiol. 1992;11:261–7.

    CAS  PubMed  Google Scholar 

  131. Dawes J. Interactions of heparins in the vascular environment. Haemostasis. 1993;23(Suppl 1):212–9.

    CAS  PubMed  Google Scholar 

  132. Tiozzo R, Cingi MR, Croce MA. Interaction of heparan sulfate and its fractions with endothelial cells in culture. Int J Tissue React. 1993;15:163–8.

    CAS  PubMed  Google Scholar 

  133. Yanaka K, Spellman SR, McCarthy JB, et al. Reduction of brain injury using heparin to inhibit leukocyte accumulation in a rat model of transient focal cerebral ischemia. I. Protective mechanism. J Neurosurg. 1996;85:1102–7.

    Article  CAS  PubMed  Google Scholar 

  134. Chamorro A. Heparin in acute ischemic stroke revisited. Rev Neurol (Paris). 2008;164:815–8.

    CAS  Google Scholar 

  135. Moonis M, Fisher M. Considering the role of heparin and low-molecular-weight heparins in acute ischemic stroke. Stroke. 2002;33:1927–33.

    Article  CAS  PubMed  Google Scholar 

  136. Edelman ER, Karnovsky MJ. Contrasting effects of the intermittent and continuous administration of heparin in experimental restenosis. Circulation. 1994;89:770–6.

    CAS  PubMed  Google Scholar 

  137. Linkins LA, Warkentin TE. The approach to heparin-induced thrombocytopenia. Semin Respir Crit Care Med. 2008;29:66–74.

    Article  PubMed  Google Scholar 

  138. Bobek V, Kovarik J. Antitumor and antimetastatic effect of warfarin and heparins. Biomed Pharmacother. 2004;58:213–9.

    Article  CAS  PubMed  Google Scholar 

  139. Bowler SD, Smith SM, Lavercombe PS. Heparin inhibits the immediate response to antigen in the skin and lungs of allergic subjects. Am Rev Respir Dis. 1993;147:160–3.

    CAS  PubMed  Google Scholar 

  140. Seeds EA, Page CP. Heparin inhibits allergen-induced eosinophil infiltration into guinea-pig lung via a mechanism unrelated to its anticoagulant activity. Pulm Pharmacol Ther. 2001;14:111–9.

    Article  CAS  PubMed  Google Scholar 

  141. Zak-Nejmark T, Krasnowska M, Jankowska R, et al. Heparin modulates migration of human peripheral blood mononuclear cells and neutrophils. Arch Immunol Ther Exp (Warsz). 1999;47:245–9.

    CAS  Google Scholar 

  142. Derhaschnig U, Pernerstorfer T, Knechtelsdorfer M, et al. Evaluation of antiinflammatory and antiadhesive effects of heparins in human endotoxemia. Crit Care Med. 2003;31:1108–12.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

JMS is supported by grants from the National Institutes of Health (HL082517, NS061808, NS060801), the Department of Veterans Affairs (Baltimore VA), the Department of Defense (PT074766, SC090293), and the Christopher and Dana Reeves Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Marc Simard.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Simard, J.M., Schreibman, D., Aldrich, E.F. et al. Unfractionated Heparin: Multitargeted Therapy for Delayed Neurological Deficits Induced by Subarachnoid Hemorrhage. Neurocrit Care 13, 439–449 (2010). https://doi.org/10.1007/s12028-010-9435-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12028-010-9435-1

Keywords

  • Subarachnoid hemorrhage
  • Vasospasm
  • Inflammation
  • Heparin