Skip to main content

Advertisement

Log in

QTc Interval and Neurological Outcomes in Aneurysmal Subarachnoid Hemorrhage

  • Original Article
  • Published:
Neurocritical Care Aims and scope Submit manuscript

Abstract

Background

Prolonged heart rate-corrected QT (QTc) interval is frequently observed in subarachnoid hemorrhage (SAH). This study was conducted to determine the relationship between QTc interval and neurological outcome during the acute posthemorrhagic period after aneurysmal SAH.

Methods

We studied 71 patients undergoing surgery who were admitted within 24 h after the onset of aneurysmal SAH. Standard 12-lead electrocardiography was performed on admission (T1) and at 1 and 7 days after operation (T2 and T3). QT intervals were corrected by heart rate according to the Fridericia formula. The Glasgow Coma Scale (GCS) score was calculated over the period T1–T3. Neurological outcome was assessed using the Glasgow Outcome Scale at hospital discharge.

Results

Among the 71 patients, 31 had an unfavorable neurological outcome. Although QTc interval prolongation improved in patients with a good outcome, QTc interval prolongation continued in patients with an unfavorable outcome. The areas under the receiver–operator characteristic curves showed that the QTc and GCS score at T3, and the Hunt and Hess grade were significant predictors of an unfavorable neurological outcome. The threshold value, sensitivity, and specificity for the QTc at T3 were 448 ms, 73% [95% confidence interval (CI), 68–78], and 93% (95% CI, 90–96), respectively.

Conclusion

This study confirms that QTc interval prolongation continues in the SAH patients with an unfavorable outcome but that QTc interval prolongation improves in patients with a good outcome, suggesting that a QTc interval of more than 448 ms at 7 days after operation is a predictor of neurological outcome after SAH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Svigelj V, Grad A, Kiauta T. Heart rate variability, norepinephrine and ECG changes in subarachnoid hemorrhage patients. Acta Neurol Scand. 1996;94:120–6.

    Article  CAS  PubMed  Google Scholar 

  2. Kawahara E, Ikeda S, Miyahara Y, Kohno S. Role of autonomic nervous dysfunction in electrocardiographic abnormalities and cardiac injury in patients with acute subarachnoid hemorrhage. Circ J. 2003;67:753–6.

    Article  PubMed  Google Scholar 

  3. Van den bergh WM, Algra A, Rinkel GJ. Electrocardiographic abnormalities and serum magnesium in patients with subarachnoid hemorrhage. Stroke. 2004;35:644–8.

    Article  PubMed  Google Scholar 

  4. Huang CH, Chen WJ, Chang WT, Yip PK, Lee YT. QTc dispersion as a prognostic factor in intracerebral hemorrhage. Am J Emerg Med. 2004;22:141–4.

    Article  PubMed  Google Scholar 

  5. Fukui S, Katoh H, Tsuzuki N, et al. Multivariate analysis of risk factors for QT prolongation following subarachnoid hemorrhage. Crit Care. 2003;7:R7–12.

    Article  PubMed  Google Scholar 

  6. Lorsheyd A, Simmers TA, Robles De Medina EO. The relationship between electrocardiographic abnormalities and location of the intracranial aneurysm in subarachnoid hemorrhage. Pacing Clin Electrophysiol. 2003;26:1722–8.

    Article  CAS  PubMed  Google Scholar 

  7. Kawasaki T, Azuma A, Nakagawa M, et al. Electrocardiographic score as a predictor of mortality after subarachnoid hemorrhage. Circ J. 2002;66:567–70.

    Article  PubMed  Google Scholar 

  8. Macmillan CS, Andrews PJ, Struthers AD. QTc dispersion as a marker for medical complications after severe subarachnoid hemorrhage. Eur J Anaesthesiol. 2003;20:537–42.

    Article  CAS  PubMed  Google Scholar 

  9. Coghlan LA, Hindman BJ, Bayman EO, et al. Independent associations between electrocardiographic abnormalities and outcomes in patients with aneurysmal subarachnoid hemorrhage findings from the intraoperative hypothermia aneurysm surgery trial. Stroke. 2009;40:412–8.

    Article  PubMed  Google Scholar 

  10. Wartenberg KE, Schmidt JM, Claassen J, et al. Impact of medical complications on outcome after subarachnoid hemorrhage. Crit Care Med. 2006;34:617–23.

    Article  PubMed  Google Scholar 

  11. Sehba FA, Bederson JB. Mechanisms of acute brain injury after subarachnoid hemorrhage. Neurol Res. 2006;28:381–91.

    Article  CAS  PubMed  Google Scholar 

  12. Mascia L, Fedorko L, terBrugge K, et al. The accuracy of transcranial Doppler to detect vasospasm in patients with aneurysmal subarachnoid hemorrhage. Intensive Care Med. 2003;29:1088–94.

    Article  CAS  PubMed  Google Scholar 

  13. Rosen DS, Macdonald RL. Grading of subarachnoid hemorrhage: modification of the World Federation of Neurosurgical Societies Scale on the basis of data for a large series of patients. Neurosurgery. 2004;54:566–76.

    Article  PubMed  Google Scholar 

  14. Claassen J, Vu A, Kreiter KT, et al. Effect of acute physiologic derangements on outcome after subarachnoid hemorrhage. Crit Care Med. 2004;32:832–8.

    Article  PubMed  Google Scholar 

  15. Mascia L, Fedorko L, terBrugge K, et al. The accuracy of transcranial Doppler to detect vasospasm in patients with aneurysmal subarachnoid hemorrhage. Intensive Care Med. 2003;29:1088–94.

    Article  CAS  PubMed  Google Scholar 

  16. Hunt WE, Hess RM. Surgical risk as related to time of intervention in the repair of intracranial aneurysms. J Neurosurg. 1968;28:14–20.

    Article  CAS  PubMed  Google Scholar 

  17. Fisher CM, Kistler JP, Davis JM. Relation of cerebral vasospasm to subarachnoid hemorrhage visualized by computerized tomographic scanning. Neurosurgery. 1980;6:1–9.

    Article  CAS  PubMed  Google Scholar 

  18. Baggish AL, MacGillivray TE, Hoffman W, et al. Postoperative troponin T predicts prolonged intensive care unit length of stay following cardiac surgery. Crit Care Med. 2004;32:1866–71.

    Article  CAS  PubMed  Google Scholar 

  19. Fujii K, Yamaguchi S, Egawa H, Hamaguchi S, Kitajima T, Minami J. Effects of head-up tilt after stellate ganglion block on QT interval and QT dispersion. Reg Anesth Pain Med. 2004;29:317–22.

    PubMed  Google Scholar 

  20. Charbit B, Samain E, Merckx P, Funck-Brentano C. QT interval measurement. Evaluation of automatic QTc measurement and new simple method to calculate and interpret corrected QT interval. Anesthesiology. 2006;104:255–60.

    Article  PubMed  Google Scholar 

  21. Higashijima U, Terao Y, Ichinomiya T, Miura K, Fukusaki M, Sumikawa K. A comparison of the effect on QT interval between propofol and thiamylal during anaesthetic induction. Anaesthesia. 2010;63:679–83.

    Article  Google Scholar 

  22. Teasdale G, Jennett B. Assessment of coma and impaired consciousness. A practial scale. Lancet. 1974;2:81–4.

    Article  CAS  PubMed  Google Scholar 

  23. Yoshimoto Y, Tanaka Y, Hoya K. Acute systemic inflammatory response syndrome in subarachnoid hemorrhage. Stroke. 2001;32:1989–93.

    Article  CAS  PubMed  Google Scholar 

  24. Jennett B, Bond M. Assessment of outcome after severe brain damage. A practical scale. Lancet. 1975;1:480–4.

    Article  CAS  PubMed  Google Scholar 

  25. Weiss N, Sanchez-Pena P, Roche S, et al. Prognosis value of plasma S100B protein levels after subarachnoid aneurysmal hemorrhage. Anesthesiology. 2006;104:658–66.

    Article  CAS  PubMed  Google Scholar 

  26. Terao Y, Takada M, Tanabe T, Ando Y, Fukusaki M, Sumikawa K. Microalbuminuria is a prognostic predictor in aneurysmal subarachnoid hemorrhage. Intensive Care Med. 2007;33:1000–6.

    Article  PubMed  Google Scholar 

  27. Drew BJ, Califf RM, Funk M, et al. Practice standards for electrocardiographic monitoring in hospital settings: An American Heart Association scientific statement from the Councils on Cardiovascular Nursing, Clinical Cardiology, and Cardiovascular Disease in the young: Endorsed by the International Society of Computerized Electrocardiology and the American Association of Critical-Care Nurses. Circulation. 2004;110:2721–46.

    Article  PubMed  Google Scholar 

  28. Gupta A, Lawrence AT, Krishnan K, Kavinsky CJ, Trohman RG. Current concepts in the mechanisms and management of drug-induced QT prolongation and torsade de pointes. Am Heart J. 2007;153:891–9.

    Article  PubMed  Google Scholar 

  29. Prosser J, MacGregor L, Lees KR, Diener HC, Hacke W, Davis S. Predictors of early cardiac morbidity and mortality after ischemic stroke. Stroke. 2007;38:2295–302.

    Article  PubMed  Google Scholar 

  30. Tung P, Kopelnik A, Banki N, et al. Predictors of neurocardiogenic injury after subarachnoid hemorrhage. Stroke. 2004;35:548–51.

    Article  PubMed  Google Scholar 

  31. Cowan JC, Yusoff K, Moore M, et al. Importance of lead selection in QT interval measurement. Am J Cardiol. 1988;61:83–7.

    Article  CAS  PubMed  Google Scholar 

  32. Colkesen AY, Sen O, Giray S, Acil T, Ozin B, Muderrisoglu H. Correlation between QTc interval and clinical severity of subarachnoid hemorrhage depends on the QTc formula used. Pacing Clin Electrophysiol. 2007;30:1482–6.

    Article  PubMed  Google Scholar 

  33. Miyauchi Y, Katoh T, Iwasaki Y, Hayashi A, Mizuno A. Comparison and problems of manual and automated methods for detailed measurement of QT intervals [In Japanese]. Jpn J Electrocardiol. 2008;28:210–5.

    Google Scholar 

  34. Dhar R, Diringer MN. The burden of systemic inflammatory response predicts vasospasm and outcome after subarachnoid hemorrhage. Neurocrit Care. 2008;8:404–12.

    Article  PubMed  Google Scholar 

  35. Terao Y, Miura K, Ichinomiya T, Higashijima U, Fukusaki M, Sumikawa K. Admission microalbuminuria and neurologic outcomes in intensive care unit patients with spontaneous intracerebral hemorrhage. J Neurosurg Anesthesiol. 2008;20:163–8.

    Article  PubMed  Google Scholar 

  36. Satoh S, Toshima Y, Ikegaki I, Iwasaki M, Asano T. Wide therapeutic time window for fasudil neuroprotection against ischemia-induced delayed neuronal death in gerbils. Brain Res. 2007;1128:175–80.

    Article  CAS  PubMed  Google Scholar 

  37. Westphal M, Noshima S, Isago T, et al. Selective thromboxane A2 synthase inhibition by OKY-046 prevents cardiopulmonary dysfunction after ovine smoke inhalation injury. Anesthesiology. 2005;102:954–61.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported, in part, by research funds to promote the hospital functions of Japan Labor Health and Welfare Organization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshiaki Terao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ichinomiya, T., Terao, Y., Miura, K. et al. QTc Interval and Neurological Outcomes in Aneurysmal Subarachnoid Hemorrhage. Neurocrit Care 13, 347–354 (2010). https://doi.org/10.1007/s12028-010-9411-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12028-010-9411-9

Keywords

Navigation