Skip to main content

Advertisement

Log in

Arginine-Vasopressin V1 but not V2 Receptor Antagonism Modulates Infarct Volume, Brain Water Content, and Aquaporin-4 Expression Following Experimental Stroke

  • Translational Research
  • Published:
Neurocritical Care Aims and scope Submit manuscript

Abstract

Background

Aquaporin-4 (AQP4) plays an important role in the evolution of ischemia-evoked cerebral edema. Experimental studies have also demonstrated anti-edema effects of arginine-vasopressin (AVP) antagonists. In a well-characterized murine model of ischemic stroke, we tested the hypotheses that treatment with selective AVP V1 but not V2 receptor antagonist (1) attenuates injury volume and ischemia-evoked cerebral edema; and (2) modulates ischemia-evoked AQP4 expression.

Methods

Isoflurane-anesthetized adult male C57bl/6 mice were subjected to 60 min of middle cerebral artery occlusion (MCAO) by the intraluminal suture technique. Adequacy of MCAO and reperfusion was monitored with laser-Doppler flowmetry over the ipsilateral parietal cortex. Mice were treated with intracerebroventricular injection of selective AVP V1 and V2 receptor antagonist or control vehicle (0.9% saline). Infarct volume (tetrazolium staining), cerebral edema (wet-to-dry ratios) and AQP4 protein expression (immunoblotting) were determined in different treatment groups in separate sets of experiments at 24 h of reperfusion.

Results

Infarct volume (percentage of contralateral structure; mean ± SEM) was significantly attenuated in mice treated with 500 ng V1 receptor antagonist as well as at a dose of 1000 ng compared to controls. However, there was no difference in infarct volume following treatment with 1000 ng V2 antagonist as compared to controls. Water content in the ischemic hemisphere was significantly attenuated with V1 receptor antagonist (1000 ng) but not with V2 receptor antagonist as compared to controls. Treatment with AVP V1 receptor antagonist (1000 ng) but not V2 receptor antagonist, significantly upregulated AQP4 protein expression (% β-actin) compared to saline-treated mice in ipsilateral (ischemic) cerebral cortex.

Conclusions

These data demonstrate that following experimental stroke AVP V1 receptor antagonism: (1) attenuates injury volume and ischemia-evoked cerebral edema; (2) modulates AQP4 expression; and (3) may serve as an important therapeutic target for neuroprotection and ischemia-evoked cerebral edema.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Landgraf R. Central release of vasopressin: stimuli, dynamics, consequences. Prog Brain Res. 1992;91:29–39.

    Article  CAS  PubMed  Google Scholar 

  2. Buijs RM. Intra- and extrahypothalamic vasopressin and oxytocin pathways in the rat. Cell Tissue Res. 1978;192:423–35.

    Article  CAS  PubMed  Google Scholar 

  3. Riphagen CL, Pittman QJ. Arginine vasopressin as a central neurotransmitter. Fed Proc. 1986;45:125–32.

    Google Scholar 

  4. Bhardwaj A. Neurological impact of vasopressin dysregulation and hyponatremia. Ann Neurol. 2006;59:229–36.

    Article  CAS  PubMed  Google Scholar 

  5. Chang Y, Chen T-Y, Chen C-H, et al. Plasma arginine-vasopressin following experimental stroke: effect of osmotherapy. J Appl Physiol. 2006;100:1445–51.

    Article  CAS  PubMed  Google Scholar 

  6. Niermann H, Amiry-Moghaddam M, Holthoff K, et al. A novel role of vasopressin in the brain: modulation of activity-dependent water flux in the neocortex. J Neurosci. 2001;21:3045–51.

    CAS  PubMed  Google Scholar 

  7. Depasquale M, Patlak CS, Cserr HF. Brain ion and volume regulation during acute hyponatremia in Battleboro rats. Am J Physiol. 1989;256:F1059–66.

    CAS  PubMed  Google Scholar 

  8. Cserr HF, Latzkovitz L. A role for centrally-released vasopressin in brain ion and volume regulation: a hypothesis. Prog Brain Res. 1992;91:3–6.

    Article  CAS  PubMed  Google Scholar 

  9. Fernandez N, Martinez MA, Garcia-Villalon AL, et al. Cerebral vasoconstriction produced by vasopressin in conscious goats: role of vasopressin V(1) and V(2) receptors and nitric oxide. Br J Pharmacol. 2001;132:1837–44.

    Article  CAS  PubMed  Google Scholar 

  10. Decaux G, Soupart A, Vassart G. Non-peptide arginine-vasopressin antagonists: the vaptans. Lancet. 2008;371:1624–32.

    Article  CAS  PubMed  Google Scholar 

  11. Holmes CL, Landry DW, Granton JT. Science review: vasopressin and the cardiovascular system part 1—receptor physiology. Crit Care. 2003;7:427–34.

    Article  PubMed  Google Scholar 

  12. Kozniewska E, Szczepanska-Sadowska E. V2-like receptors mediate cerebral blood flow increase following vasopressin administration in rats. J Cardiovasc Pharmacol. 1990;15:579–85.

    CAS  PubMed  Google Scholar 

  13. Vakili A, Kataoka H, Plesnila N. Role of arginine vasopressin V1 and V2 receptors for brain damage after transient focal cerebral ischemia. J Cereb Blood Flow Metab. 2005;25:1012–9.

    Article  CAS  PubMed  Google Scholar 

  14. Barreca T, Gandolfo C, Corsini G, et al. Evaluation of the secretory pattern of plasma arginine vasopressin in stroke patients. Cerebrovasc Dis. 2001;11:113–8.

    Article  CAS  PubMed  Google Scholar 

  15. Dickinson LD, Betz AL. Attenuated development of ischemic brain edema in vasopressin-deficient rats. J Cereb Blood Flow Metab. 1992;12:681–90.

    CAS  PubMed  Google Scholar 

  16. Liu XF, Shi YM, Lin BC. Mechanism of action of arginine vasopressin on acute ischemic brain edema. Chin Med (Engl). 1991;104:490–3.

    Google Scholar 

  17. Ikeda Y, Toda S, Kawamoto T, Teramoto A. Arginine vasopressin release inhibitor RU51599 attenuates brain edema following transient forebrain ischemia in rats. Acta Neurochir (Wien). 1997;139:1166–71.

    Article  CAS  Google Scholar 

  18. Shuiab A, Xu WC, Yang T, Noor R. Effects of nonpeptide V(1) vasopressin receptor antagonist SR-49059 on infarction volume and recovery of function in a focal embolic stroke model. Stroke. 2002;33:3033–7.

    Article  CAS  Google Scholar 

  19. Kleindienst A, Fazzina G, Dunbar JG, et al. Protective effect of the V1a receptor antagonist SR49059 on brain edema formation following middle cerebral artery occlusion in the rat. Acta Neurochir Suppl. 2006;96:303–6.

    Article  CAS  PubMed  Google Scholar 

  20. King LS, Agre P. Pathophysiology of the aquaporin water channels. Annu Rev Physiol. 1996;58:619–48.

    Article  CAS  PubMed  Google Scholar 

  21. Manley GT, Fujimura M, Ma T, et al. Aquaporin-4 deletion in mice reduces brain edema after acute water intoxication and ischemic stroke. Nat Med. 2000;6:159–63.

    Article  CAS  PubMed  Google Scholar 

  22. Badaut J, Lasbennes F, Magistretti PJ, et al. Aquaporins in brain: distribution, physiology, and pathophysiology. J Cereb Blood Flow Metab. 2002;22:367–78.

    Article  CAS  PubMed  Google Scholar 

  23. Amiry-Moghaddam M, Otsuka T, Hurn PD, et al. An α-syntrophin dependent pool of AQP4 in astroglial end-feet confers bidirectional water flow between blood and brain. Proc Natl Acad Sci USA. 2003;100:2106–11.

    Article  CAS  PubMed  Google Scholar 

  24. Amiry-Moghaddam M, Ottersen OP. The molecular basis of water transport in the brain. Nat Rev Neurosci. 2003;4:991–1001.

    Article  CAS  PubMed  Google Scholar 

  25. Amiry-Moghaddam M, Xue R, Haug F-M, et al. Alpha-syntrophin deletion removes the perivascular but not endothelial pool of aquaporin-4 at the blood–brain barrier and delays the development of brain edema in an experimental model of acute hyponatremia. FASEB J. 2004;18:542–4.

    CAS  PubMed  Google Scholar 

  26. Bloch O, Papadopoulos MC, Manley GT, et al. Aquaporin-4 gene deletion in mice increases focal edema associated with staphylococcal brain abscess. J Neurochem. 2005;95:254–62.

    Article  CAS  PubMed  Google Scholar 

  27. Papadopoulos MC, Manley GT, Krishna S, et al. Aquaporin-4 facilitates reabsorption of excess fluid in vasogenic brain edema. FASEB J. 2004;18:1291–3.

    CAS  PubMed  Google Scholar 

  28. Ribeiro Mde C, Hirt L, Bogousslavsky J, et al. Time course of aquaporin expression after transient focal cerebral ischemia in mice. J Neurosci Res. 2006;83:1231–40.

    Article  PubMed  CAS  Google Scholar 

  29. Frigeri A, Grooper MA, Umenishi F, et al. Localization of MIWC and GLIP water channel homologs in neuromuscular, epithelial and glandular tissues. J Cell Sci. 1995;108:2993–3002.

    CAS  PubMed  Google Scholar 

  30. Nielsen S, Nagelhus EA, Amiri-Moghaddam M, et al. Specialized membrane domains for water transport in glial cells: high resolution immunogold cytochemistry of aquaporin-4 in rat brain. J Neurosci. 1997;17:171–80.

    CAS  PubMed  Google Scholar 

  31. Sawada M, Alkayed NJ, Goto S, et al. Estrogen receptor antagonist ICI182, 780 exacerbates ischemic injury in female mouse. J Cereb Blood Flow Metab. 2000;20:112–8.

    Article  CAS  PubMed  Google Scholar 

  32. Zeynalov E, Chen CH, Froehner SC, et al. The perivascular pool of aquaporin-4 mediates the effect of osmotherapy in postischemic cerebral edema. Crit Care Med. 2008;36:2634–40.

    Article  CAS  PubMed  Google Scholar 

  33. Liu X, Zhang W, Alkayed NJ, et al. Lack of sex-linked differences in cerebral edema and aquaporin-4 expression after experimental stroke. J Cereb Blood Flow Metab. 2008;28:1898–906.

    Article  CAS  PubMed  Google Scholar 

  34. Hara H, Huang PL, Panahian N, et al. Reduced brain edema and infarction volume in mice lacking the neuronal isoform of nitric oxide synthase after transient MCA occlusion. J Cereb Blood Flow Metab. 1996;16:605–11.

    Article  CAS  PubMed  Google Scholar 

  35. Lin TN, He YY, Wu G, et al. Effect of brain edema on infarct volume in a focal cerebral ischemia model in rats. Stroke. 1993;24:117–21.

    CAS  PubMed  Google Scholar 

  36. Ouyang Y, Rosenstein A, Kreiman G, et al. Tetanic stimulation leads to increased accumulation of Ca(2+)/calmodulin-dependent protein kinase II via dendritic protein synthesis in hippocampal neurons. J Neurosci. 1999;15(19):7823–33.

    Google Scholar 

  37. Frydenlund DS, Bhardwaj A, Otsuka T, et al. Temporary loss of perivascular aquaporin-4 in neocortex after transient middle cerebral artery occlusion in mice. Proc Natl Acad Sci USA. 2006;103:13532–6.

    Article  CAS  PubMed  Google Scholar 

  38. Hacke W, Schwab S, Horn M, et al. “Malignant” middle cerebral artery infarction: clinical course and prognostic signs. Arch Neurol. 1996;53:309–15.

    CAS  PubMed  Google Scholar 

  39. Klatzo I. Neuropathological aspects of cerebral edema. J Neuropathol Exp Neurol. 1967;26:1–14.

    Article  CAS  PubMed  Google Scholar 

  40. Abe O, Okubo T, Hayashi N, et al. Temporal changes of apparent diffusion coefficients of water and metabolites in rats with hemispheric infarction; experimental study of transhemispheric diaschisis in the contralateral hemisphere at 7 tesla. J Cereb Blood Flow Metab. 2000;20:726–35.

    Article  CAS  PubMed  Google Scholar 

  41. Abbott NJ. Inflammatory mediators and modulation of blood–brain barrier permeability. Cell Mol Neurobiol. 2000;20:131–47.

    Article  CAS  PubMed  Google Scholar 

  42. Bemana I, Nagao S. Treatment of brain edema with nonpeptide arginine vasopressin V1 receptor antagonist OPC-21268 in rats. Neurosurgery. 1999;44:148–54.

    Article  CAS  PubMed  Google Scholar 

  43. Van Bruggen N, Thibodeaux H, Palmer JT, et al. VEGF antagonism reduces edema formation and tissue damage after ischemia/reperfusion in mouse brain. J Clin Invest. 1999;104:1613–20.

    Article  PubMed  Google Scholar 

  44. Doczi T, Laszlo FA, Szerdahelyi P, Joo F. Involvement of vasopressin in brain edema formation: further evidence obtained from the Battleboro diabetes insipidus rat with subarachnoid hemorrhage. Neurosurgery. 1984;14:436–41.

    Article  CAS  PubMed  Google Scholar 

  45. Trabold R, Krieg S, Scholler K, et al. Role of vasopressin v(1a) and v(2) receptors for the development of secondary brain damage after traumatic brain injury in mice. J Neurotrauma. 2008;25:1459–65.

    Article  PubMed  Google Scholar 

  46. Rosenberg GA, Scremin O, Estrada E, et al. Arginine vasopressin V1-antagonist and atrial natriuretic peptide reduce hemorrhagic brain edema in rats. Stroke. 1992;23:1767–73.

    CAS  PubMed  Google Scholar 

  47. Molnár AH, Varga C, Berkó A, et al. Prevention of hypoxic brain oedema by the administration of vasopressin receptor antagonist OPC-31260. Prog Brain Res. 2008;170:519–25.

    Article  PubMed  CAS  Google Scholar 

  48. Liu X, Jin Y, Zheng H, Chen G, et al. Arginine vasopressin gene expression in supraoptic nucleus and paraventricular nucleus of hypothalamus following cerebral ischemia and reperfusion. Chin Med Sci J. 2000;15:157–61.

    CAS  PubMed  Google Scholar 

  49. Reeder RF, Nattie EE, North WG. Effect of vasopressin on cold-induced brain edema in cats. J Neurosurg. 1986;64:941–50.

    Article  CAS  PubMed  Google Scholar 

  50. Liu X, Jin Y, Chen G. Effect of vasopressin on delayed neuronal damage in hippocampus following cerebral ischemia and reperfusion in gerbils. Chin Med Sci J. 1996;11:93–6.

    CAS  PubMed  Google Scholar 

  51. Latzkovitz L, Cserr HF, Park JT, et al. Effects of arginine vasopressin and atriopeptin on glial cell volume measured as 3-MG space. Am J Physiol. 1993;264:C603–8.

    Google Scholar 

  52. Urban IJ, Killian MJ. Two actions of vasopressin on neurons in the rat ventral hippocampus; a microelectrophoretic study. Neuropeptides. 1990;16:83–90.

    Article  CAS  PubMed  Google Scholar 

  53. Fields JD, Bhardwaj A. Non-peptide arginine-vasopressin antagonists (vaptans) for the treatment of hyponatremia in neurocritical care: a new alternative? Neurocrit Care. 2009;37:2306–7.

    CAS  Google Scholar 

  54. Okuno K, Taya K, Marmarou CR, et al. The modulation of aquaporin-4 by using PKC-activator (phorbol myristate acetate) and V1a receptor antagonist (SR49059) following middle cerebral artery occlusion/reperfusion in the rat. Acta Neurochir Suppl. 2008;102:431–6.

    Article  PubMed  Google Scholar 

  55. Taya K, Gulsen S, Okuno K, et al. Modulation of AQP4 expression by the selective V1a receptor antagonist, SR49059, decreases trauma-induced brain edema. Acta Neurochir Suppl. 2008;102:425–9.

    Article  PubMed  Google Scholar 

  56. Vajda Z, Pedersen M, Füchtbauer EM, et al. Delayed onset of brain edema and mislocalization of aquaporin-4 in dystrophin-null transgenic mice. Proc Natl Acad Sci USA. 2002;99:13131–6.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This work was supported by Public Health Service NIH Grant NS046379.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anish Bhardwaj.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, X., Nakayama, S., Amiry-Moghaddam, M. et al. Arginine-Vasopressin V1 but not V2 Receptor Antagonism Modulates Infarct Volume, Brain Water Content, and Aquaporin-4 Expression Following Experimental Stroke. Neurocrit Care 12, 124–131 (2010). https://doi.org/10.1007/s12028-009-9277-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12028-009-9277-x

Keywords

Navigation