Skip to main content
Log in

Cerebral Glutamine Concentration and Lactate–Pyruvate Ratio in Patients with Acute Liver Failure

  • ORIGINAL ARTICLE
  • Published:
Neurocritical Care Aims and scope Submit manuscript

Abstract

Aim

Hyperammonemia causes brain edema and high intracranial pressure (ICP) in acute liver failure (ALF) by accumulation of glutamine in brain. Since a high-level glutamine may compromise mitochondrial function, the aim of this study was to determine if the lactate–pyruvate ratio is associated with a rise in the glutamine concentration and ICP.

Patients and Methods

In 13 patients with ALF (8F/5M; median age 46 (range 18–66) years) the cerebral extracellular concentrations of glutamine, lactate, and pyruvate were measured by in vivo brain microdialysis together with ICP and cerebral perfusion pressure (CPP).

Results

The cerebral glutamine concentration was 4,396 (1,011–9,712) μM, lactate 2.15 (1.1–4.45) mM, and pyruvate 101 (43–255) μM. The lactate–pyruvate ratio was 21 (16–40), ICP 20 (2–28) mmHg, and CPP 72 (56–115) mmHg. Cerebral glutamine concentration correlated with the lactate–pyruvate ratio (r = 0.89, P < 0.05). Also the ICP, but not CPP, correlated to the lactate–pyruvate ratio (r = 0.64, P < 0.05).

Conclusion

ICP and the cerebral glutamine concentration in patients with ALF correlate to the lactate–pyruvate ratio. Since CPP was sufficient in all patients the rise in lactate–pyruvate ratio indicates that accumulation of glutamine compromises mitochondrial function and causes intracranial hypertension.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

ALF:

Acute liver failure

ALT:

Alanine aminotransferase

BBB:

Blood–brain barrier

CPP:

Cerebral perfusion pressure

HE:

Hepatic encephalopathy

ICP:

Intracranial pressure

INR:

International Normalization Ratio

MPT:

Mitochondrial permeability transition

NE:

Norepinephrine

PaCO2 :

Carbon dioxide tension in arterial blood

ROS:

Reactive oxygen species

References

  1. O’Grady JG, Schalm SW, Williams R. Acute liver failure: redefining the syndromes. Lancet 1993;342(8866):273–5.

    Article  PubMed  CAS  Google Scholar 

  2. Takahashi H, Koehler RC, Brusilow SW, Traystman RJ. Inhibition of brain glutamine accumulation prevents cerebral edema in hyperammonemic rats. Am J Physiol 1991;261(3 Pt 2):H825–9.

    PubMed  CAS  Google Scholar 

  3. Clemmesen JO, Larsen FS, Kondrup J, Hansen BA, Ott P. Cerebral herniation in patients with acute liver failure is correlated with arterial ammonia concentration. Hepatology 1999;29(3):648–53.

    Article  PubMed  CAS  Google Scholar 

  4. Strauss GI, Knudsen GM, Kondrup J, Moller K, Larsen FS. Cerebral metabolism of ammonia and amino acids in patients with fulminant hepatic failure. Gastroenterology 2001;121(5):1109–19.

    Article  PubMed  CAS  Google Scholar 

  5. Bhatia V, Singh R, Acharya SK. Predictive value of arterial ammonia for complications and outcome in acute liver failure. Gut 2006;55(1):98–104.

    Article  PubMed  CAS  Google Scholar 

  6. Ott P, Larsen FS. Blood-brain barrier permeability to ammonia in liver failure: a critical reappraisal. Neurochem Int 2004;44(4):185–98.

    Article  PubMed  CAS  Google Scholar 

  7. Pedersen HR, Ring-Larsen H, Olsen NV, Larsen FS. Hyperammonemia acts synergistically with lipopolysaccharide in inducing changes in cerebral hemodynamics in rats anaesthetised with pentobarbital. J Hepatol 2007;47(2):245–52.

    Article  PubMed  CAS  Google Scholar 

  8. Martinez-Hernandez A, Bell KP, Norenberg MD. Glutamine synthetase: glial localization in brain. Science 1977;195(4284):1356–8.

    Article  PubMed  CAS  Google Scholar 

  9. Chatauret N, Zwingmann C, Rose C, Leibfritz D, Butterworth RF. Effects of hypothermia on brain glucose metabolism in acute liver failure: a H/C-nuclear magnetic resonance study. Gastroenterology 2003;125(3):815–24.

    Article  PubMed  CAS  Google Scholar 

  10. Brusilow SW, Traystman R. Hepatic encephalopathy. N Engl J Med 1986;314(12):786–7.

    PubMed  CAS  Google Scholar 

  11. Tofteng F, Hauerberg J, Hansen BA, Pedersen CB, Jorgensen L, Larsen FS. Persistent arterial hyperammonemia increases the concentration of glutamine and alanine in the brain and correlates with intracranial pressure in patients with fulminant hepatic failure. J Cereb Blood Flow Metab 2006;26(1):21–7.

    Article  PubMed  CAS  Google Scholar 

  12. Norenberg MD. Oxidative and nitrosative stress in ammonia neurotoxicity. Hepatology 2003;37(2):245–8.

    Article  PubMed  CAS  Google Scholar 

  13. Albrecht J, Norenberg MD. Glutamine: a Trojan horse in ammonia neurotoxicity. Hepatology 2006;44(4):788–94.

    Article  PubMed  CAS  Google Scholar 

  14. Jayakumar AR, Rama Rao KV, Murthy ChRK, Norenberg MD. Glutamine in the mechanism of ammonia-induced astrocyte swelling. Neurochem Int 2006;48(6–7):623–8.

    PubMed  CAS  Google Scholar 

  15. Murphy N, Auzinger G, Bernel W, Wendon J. The effect of hypertonic sodium chloride on intracranial pressure in patients with acute liver failure. Hepatology 2004;39(2):464–70.

    Article  PubMed  CAS  Google Scholar 

  16. Haussinger D, Kircheis G, Fischer R, Schliess F, vom Dahl S. Hepatic encephalopathy in chronic liver disease: a clinical manifestation of astrocyte swelling and low-grade cerebral edema? J Hepatol 2000;32(6):1035–8.

    Article  PubMed  CAS  Google Scholar 

  17. Hilgier W, Olson JE. Brain ion and amino acid contents during edema development in hepatic encephalopathy. J Neurochem 1994;62(1):197–204.

    Article  PubMed  CAS  Google Scholar 

  18. Cordoba J, Gottstein J, Blei AT. Glutamine, myo-inositol, and organic brain osmolytes after portocaval anastomosis in the rat: implications for ammonia-induced brain edema. Hepatology 1996;24(4):919–23.

    PubMed  CAS  Google Scholar 

  19. Schliess F, Gorg B, Haussinger D. Pathogenetic interplay between osmotic and oxidative stress: the hepatic encephalopathy paradigm. Biol Chem 2006;387(10–11):1363–70.

    Article  PubMed  CAS  Google Scholar 

  20. Larsen FS. Optimal management of patients with fulminant hepatic failure: targeting the brain. Hepatology 2004;39(2):299–301.

    Article  PubMed  Google Scholar 

  21. Rama Rao KV, Chen M, Simard JM, Norenberg MD. Suppression of ammonia-induced astrocyte swelling by cyclosporin A. J Neurosci Res 2003;74(6):891–7.

    Article  PubMed  CAS  Google Scholar 

  22. Merenda A, Bullock R. Clinical treatments for mitochondrial dysfunctions after brain injury. Curr Opin Crit Care 2006;12(2):90–6.

    Article  PubMed  Google Scholar 

  23. Kristian T. Metabolic stages, mitochondria and calcium in hypoxic/ischemic brain damage. Cell Calcium 2004;36(3–4):221–33.

    Article  PubMed  CAS  Google Scholar 

  24. Marion DW, Puccio A, Wisniewski SR, Kochanek P, Dixon CE, Bullian L, Carlier P. Effect of hyperventilation on extracellular concentrations of glutamate, lactate, pyruvate, and local cerebral blood flow in patients with severe traumatic brain injury. Crit Care Med 2002;30(12):2619–25.

    Article  PubMed  CAS  Google Scholar 

  25. Hutchinson PJ, O’Connell MT, Al-Rawi PG, Kett-White R, Gupta AK, Kirkpatrick PJ, Pickard JD. Clinical cerebral microdialysis – determining the true extracellular concentration. Acta Neurochir Suppl 2002;81:359–62.

    PubMed  CAS  Google Scholar 

  26. Reinstrup P, Stahl N, Mellergard P, Uski T, Ungerstedt U, Nordstrom CH. Intracerebral microdialysis in clinical practice: baseline values for chemical markers during wakefulness, anesthesia, and neurosurgery. Neurosurgery 2000;47(3):701–9.

    Article  PubMed  CAS  Google Scholar 

  27. Wright G, Shawcross D, Olde Damink SW, Jalan R. Brain cytokine flux in acute liver failure and its relationship with intracranial hypertension. Metab Brain Dis 2007;22(3–4):375–88.

    Article  PubMed  CAS  Google Scholar 

  28. Dethloff TJ, Knudsen GM, Larsen FS. Cerebral blood flow autoregulation in experimental liver failure. J Cereb Blood Flow Metab. 2007 Dec 5; (epub ahead of print).

Download references

Acknowledgments

This work was supported by Rigshospitalet, University of Copenhagen, The Laerdal Foundation for Acute Medicine, Savvaerksejer Jeppe Juhl and wife Ovita Juhls Foundation, The Novo Nordisk Foundation, The AP-Moeller Foundation, The Danish Hospital Foundation for Medical Research – Region of Copenhagen, The Faroe Islands and Greenland and The Danish Medical Association Research Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fin Stolze Larsen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bjerring, P.N., Hauerberg, J., Frederiksen, HJ. et al. Cerebral Glutamine Concentration and Lactate–Pyruvate Ratio in Patients with Acute Liver Failure. Neurocrit Care 9, 3–7 (2008). https://doi.org/10.1007/s12028-008-9060-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12028-008-9060-4

Keywords

Navigation