Skip to main content

Advertisement

Log in

The Burden of the Systemic Inflammatory Response Predicts Vasospasm and Outcome after Subarachnoid Hemorrhage

  • Original Article
  • Published:
Neurocritical Care Aims and scope Submit manuscript

Abstract

Introduction

Subarachnoid hemorrhage (SAH) can trigger immune activation sufficient to induce the systemic inflammatory response syndrome (SIRS). This may promote both extra-cerebral organ dysfunction and delayed cerebral ischemia, contributing to worse outcome. We ascertained the frequency and predictors of SIRS after spontaneous SAH, and determined whether degree of early systemic inflammation predicted the occurrence of vasospasm and clinical outcome.

Methods

Retrospective analysis of prospectively collected data on 276 consecutive patients admitted to a neurosciences intensive care unit with acute, non-traumatic SAH between 2002 and 2005. A daily SIRS score was derived by summing the number of variables meeting standard criteria (HR >90, RR >20, Temperature >38°C, or <36°C, WBC count <4,000 or >12,000). SIRS was considered present if two or more criteria were met, while SIRS burden over the first four days was calculated by averaging daily scores. Regression modeling was used to determine the relationship among SIRS burden (after controlling for confounders including infection, surgery, and corticosteroid use), symptomatic vasospasm, and outcome, determined by hospital disposition.

Results

SIRS was present in over half the patients on admission and developed in 85% within the first four days. Factors associated with SIRS included poor clinical grade, thick cisternal blood, larger aneurysm size, higher admission blood pressure, and surgery for aneurysm clipping. Higher SIRS burden was independently associated with death or discharge to nursing home (OR 2.20/point, 95% CI 1.27–3.81). All of those developing clinical vasospasm had evidence of SIRS, with greater SIRS burden predicting increased risk for delayed ischemic neurological deficits (OR 1.77/point, 95% CI 1.12–2.80).

Conclusions

Systemic inflammatory activation is common after SAH even in the absence of infection; it is more frequent in those with more severe hemorrhage and in those who undergo surgical clipping. Higher burden of SIRS in the initial four days independently predicts symptomatic vasospasm and is associated with worse outcome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Gruber A, Rossler K, Graninger W, Donner A, Illievich U, Czech T. Ventricular cerebrospinal fluid and serum concentrations of sTNFR-I, IL-1ra, and IL-6 after aneurysmal subarachnoid hemorrhage. J Neurosurg Anesthesiol 2000;12:297–306.

    Article  PubMed  CAS  Google Scholar 

  2. Bone RC, Balk RA, Cerra FB, Fein AM, Schein RM, Sibbald WJ. Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. The ACCP/SCCM Consensus Conference Committee. American College of Chest Physicians/Society of Critical Care Medicine. Chest 1992;101:1644–55.

    Article  PubMed  CAS  Google Scholar 

  3. Napolitano LM, Ferrer T, McCarter RJ Jr, Scalea TM. Systemic inflammatory response syndrome score at admission independently predicts mortality and length of stay in trauma patients. J Trauma 2000;49:647–52; discussion 652–643.

    PubMed  CAS  Google Scholar 

  4. Ni Choileain N, Redmond HP. Cell response to surgery. Arch Surg 2006;141:1132–40.

    Article  PubMed  Google Scholar 

  5. Levy MM, Fink MP, Marshall JC, Abraham E, et al. 2001 SCCM/ESICM/ACCP/ATS/SIS International Sepsis Definitions Conference. Intensive Care Med 2003;29:530–8.

    PubMed  Google Scholar 

  6. Aird WC. The role of the endothelium in severe sepsis and multiple organ dysfunction syndrome. Blood 2003;101:3765–77.

    Article  PubMed  CAS  Google Scholar 

  7. Malham GM, Souter MJ. Systemic inflammatory response syndrome and acute neurological disease. Br J Neurosurg 2001;15:381–7.

    Article  PubMed  CAS  Google Scholar 

  8. Dilraj A, Botha JH, Rambiritch V, Miller R, van Dellen JR. Levels of catecholamine in plasma and cerebrospinal fluid in aneurysmal subarachnoid hemorrhage. Neurosurgery 1992;31:42–51.

    Article  PubMed  CAS  Google Scholar 

  9. Naredi S, Lambert G, Eden E, et al. Increased sympathetic nervous system activity in patients with nontraumatic subarachnoid hemorrhage. Stroke 2000;31:901–6.

    PubMed  CAS  Google Scholar 

  10. Moynihan J, Kruszewska B, Madden K, Callahan T. Sympathetic nervous system regulation of immunity. J Neuroimmunol 2004;147:87–90.

    Article  PubMed  CAS  Google Scholar 

  11. Gruber A, Reinprecht A, Illievich U, et al. Extracerebral organ dyfsunction and neurologic outcome after aneurysmal subarachnoid hemorrhage. Crit Care Med 1999;27:505–14.

    Article  PubMed  CAS  Google Scholar 

  12. Oliveira-Filho J, Ezzeddine MA, Segal AZ, et al. Fever in subarachnoid hemorrhage: relationship to vasospasm and outcome. Neurology 2001;56:1299–1304.

    PubMed  CAS  Google Scholar 

  13. Parkinson D, Stephenson S. Leukocytosis and subarachnoid hemorrhage. Surg Neurol 1984;21:132–4.

    Article  PubMed  CAS  Google Scholar 

  14. Weir B, Disney L, Grace M, Roberts P. Daily trends in white blood cell count and temperature after subarachnoid hemorrhage from aneurysm. Neurosurgery 1989;25:161–5.

    Article  PubMed  CAS  Google Scholar 

  15. McGirt MJ, Mavropoulos JC, McGirt LY, et al. Leukocytosis as an independent risk factor for cerebral vasospasm following aneurysmal subarachnoid hemorrhage. J Neurosurg 2003;98:1222–6.

    PubMed  Google Scholar 

  16. Yoshimoto Y, Tanaka Y, Hoya K. Acute systemic inflammatory response syndrome in subarachnoid hemorrhage. Stroke 2001;32:1989–93.

    Article  PubMed  CAS  Google Scholar 

  17. Dumont AS, Dumont RJ, Chow MM, et al. Cerebral vasospasm after subarachnoid hemorrhage: putative role of inflammation. Neurosurgery 2003;53:123–35.

    Article  PubMed  Google Scholar 

  18. Hughes JT, Schianchi PM. Cerebral artery spasm. A histological study at necropsy of the blood vessels in cases of subarachnoid hemorrhage. J Neurosurg 1978;48:515–25.

    PubMed  CAS  Google Scholar 

  19. Fassbender K, Hodapp B, Rossol S, Bertsch T, et al. Endothelin-1 in subarachnoid hemorrhage: an acute-phase reactant produced by cerebrospinal fluid leukocytes. Stroke 2000;31:2971–5.

    PubMed  CAS  Google Scholar 

  20. Chyatte D. Prevention of chronic cerebral vasospasm in dogs with ibuprofen and high-dose methylprednisolone. Stroke 1989;20:1021–6.

    PubMed  CAS  Google Scholar 

  21. Miller JA, Dacey RG Jr, Diringer MN. Safety of hypertensive hypervolemic therapy with phenylephrine in the treatment of delayed ischemic deficits after subarachnoid hemorrhage. Stroke 1995;26:2260–6.

    PubMed  CAS  Google Scholar 

  22. Teasdale GM, Drake CG, Hunt W, et al. A universal subarachnoid hemorrhage scale: report of a committee of the World Federation of Neurosurgical Societies. J Neurol Neurosurg Psychiatry 1988;51:1457.

    PubMed  CAS  Google Scholar 

  23. Fisher CM, Kistler JP, Davis JM. Relation of cerebral vasospasm to subarachnoid hemorrhage visualized by computerized tomographic scanning. Neurosurgery 1980;6:1–9.

    Article  PubMed  CAS  Google Scholar 

  24. Hijdra A, Brouwers PJ, Vermeulen M, van Gijn J. Grading the amount of blood on computed tomograms after subarachnoid hemorrhage. Stroke 1990;21:1156–61.

    PubMed  CAS  Google Scholar 

  25. Sebha FA, Bederson JB. Mechanisms of acute brain injury after subarachnoid hemorrhage. Neurol Res 2006;28:381–98.

    Article  Google Scholar 

  26. Naredi S, Lambert G, Friberg P, et al. Sympathetic activation and inflammatory response in patients with subarachnoid haemorrhage. Intensive Care Med 2006;32:1955–61.

    Article  PubMed  CAS  Google Scholar 

  27. McKeating EG, Andrews PJ, Signorini DF, Mascia L. Transcranial cytokine gradients in patients requiring intensive care after acute brain injury. Br J Anaesth 1997;78:520–3.

    PubMed  CAS  Google Scholar 

  28. Minambres E, Cemborain A, Sanchez-Velasco P, et al. Correlation between transcranial interleukin-6 gradient and outcome in patients with acute brain injury. Crit Care Med 2003;31:933–8.

    Article  PubMed  CAS  Google Scholar 

  29. Gabay C, Kushner I. Acute-phase proteins and other systemic responses to inflammation. N Engl J Med 1999;340:448–54.

    Article  PubMed  CAS  Google Scholar 

  30. Rothoerl RD, Axmann C, Pina A-L, Woertgen C, Brawanksi A. Possible role of C-reactive protein and white blood cell count in the pathogenesis of cerebral vasospasm following aneurysmal subarachnoid hemorrhage. J Neurosurg Anesthesiol 2006;18:68–72.

    Article  PubMed  Google Scholar 

  31. de Oliveira JG, Beck J, Ulrich C, Rathert J, Raabe A, Seifert V. Comparison between clipping and coiling on the incidence of cerebral vasospasm after aneurysmal subarachnoid hemorrhage: a systematic review and meta-analysis. Neurosurg Rev 2007;30:22–30; discussion 30–21.

    Article  PubMed  Google Scholar 

  32. Fassbender K, Hodapp B, Rossol S, Bertsch T, Schmeck J, et al. Inflammatory cytokines in subarachnoid haemorrhage: association with abnormal blood flow velocities in basal cerebral arteries. J Neurol Neurosurg Psychiatry 2001;70:534–7.

    Article  PubMed  CAS  Google Scholar 

  33. Peterson JW, Kwun BD, Teramura A, et al. Immunological reaction against the aging human subarachnoid erythrocyte. A model for the onset of cerebral vasospasm after subarachnoid hemorrhage. J Neurosurg 1989;71:718–26.

    PubMed  CAS  Google Scholar 

  34. Bowton DL, Bertels NH, Prough DS, Stump DA. Cerebral blood flow is reduced in patients with sepsis syndrome. Crit Care Med 1989;17:399–403.

    Article  PubMed  CAS  Google Scholar 

  35. Suarez JI, Qureshi AI, Yahia AB, et al. Symptomatic vasospasm diagnosis after subarachnoid hemorrhage: evaluation of transcranial Doppler ultrasound and cerebral angiography as related to compromised vascular distribution. Crit Care Med 2002;30:1348–55.

    Article  PubMed  Google Scholar 

  36. O’Connor E, Venkatesh B, Mashongonyika C, Lipman J, Hall J, Thomas P. Serum procalcitonin and c-reactive protein as markers of sepsis and outcome in patients with neurotrauma and subarachnoid haemorrhage. Anaesth Intensive Care 2004;32:465–70.

    CAS  Google Scholar 

  37. Gosling P, Czyz J, Nightingale P, Manji M. Microalbuminuria in the intensive care unit: clinical correlates and association with outcomes in 431 patients. Crit Care Med 2006;34:2158–66.

    Article  PubMed  CAS  Google Scholar 

  38. Bavbek M, Polin R, Kwan AL, Arthur AS, Kassell NF, Lee KS. Monoclonal antibodies against ICAM-1 and CD18 attenuate cerebral vasospasm after experimental subarachnoid hemorrhage in rabbits. Stroke 1998;29:1930–5; discussion 1935–1936.

    PubMed  CAS  Google Scholar 

  39. Clatterbuck RE, Gailloud P, Ogata L, et al. Prevention of cerebral vasospasm by a humanized anti-CD11/CD18 monoclonal antibody administered after experimental subarachnoid hemorrhage in nonhuman primates. J Neurosurg 2003;99:376–82.

    Article  PubMed  CAS  Google Scholar 

  40. German JW, Gross CE, Giclas P, Watral W, Bednar MM. Systemic complement depletion inhibits experimental cerebral vasospasm. Neurosurgery 1996;39:141–5; discussion 145–146.

    Article  PubMed  CAS  Google Scholar 

  41. Lynch JR, Wang H, McGirt MJ, et al. Simvastatin reduces vasospasm after aneurysmal subarachnoid hemorrhage: results of a pilot randomized clinical trial. Stroke 2005;36:2024–6.

    Article  PubMed  CAS  Google Scholar 

  42. Neil-Dwyer G, Walter P, Cruickshank JM. Beta-blockade benefits patients following a subarachnoid hemorrhage. Eur J Clin Pharmacol 1985;28(Suppl):25–9.

    Article  PubMed  Google Scholar 

  43. Tseng MY, Czosnyka M, Richards H, Pickard JD, Kirkpatrick PJ. Effects of acute treatment with pravastatin on cerebral vasospasm, autoregulation, and delayed ischemic deficits after aneurysmal subarachnoid hemorrhage: a phase II randomized placebo-controlled trial. Stroke 2005;36:1627–32.

    Article  PubMed  CAS  Google Scholar 

  44. McGirt MJ, Lynch JR, Parra A, et al. Simvastatin increases endothelial nitric oxide synthase and ameliorates cerebral vasospasm resulting from subarachnoid hemorrhage. Stroke 2002;33:2950–6.

    Article  PubMed  CAS  Google Scholar 

  45. McGirt MJ, Pradilla G, Legnani FG, et al. Systemic administration of simvastatin after the onset of experimental subarachnoid hemorrhage attenuates cerebral vasospasm. Neurosurgery 2006;58:945–51; discussion 945–951.

    Article  PubMed  Google Scholar 

  46. Chello M, Patti G, Candura D, et al. Effects of atorvastatin on systemic inflammatory response after coronary bypass surgery. Crit Care Med 2006;34:660–7.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajat Dhar.

Additional information

Financial support: Supported by NIH-N535906 (MND).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dhar, R., Diringer, M.N. The Burden of the Systemic Inflammatory Response Predicts Vasospasm and Outcome after Subarachnoid Hemorrhage. Neurocrit Care 8, 404–412 (2008). https://doi.org/10.1007/s12028-008-9054-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12028-008-9054-2

Keywords

Navigation