Skip to main content

Advertisement

Log in

Lupus progression deteriorates oogenesis quality in MRL/lpr mice

  • RESEARCH
  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by the activation of the immune response against self antigens. Numerous reproductive complications, including reduced birth rate and complications for the mother and the fetus during pregnancy, have been observed in women with SLE. In the present study, we aimed to investigate the effect of SLE development on oocyte meiosis in lupus-prone mice. Lupus-prone MRL/lpr mice were used for the experiments: disease-free (4 weeks of age) and sick (20 weeks of age, virgin and postpartum). The immune response was monitored by flow cytometry, ELISpot, ELISA, and histology. Oocytes were analyzed by fluorescence microscopy based on chromatin, tubulin, and actin structures. The lupus-prone MRL/lpr mice developed age-dependent symptoms of SLE with increased levels of various autoantibodies, proteinuria, and renal infiltrates and a tendency for the immune response to worsen with changes in cell populations and the cytokine profile. The number and quality of oocytes were also affected, and the successful pregnancy rate of MRL/lpr mice was limited to only 60%. Isolated oocytes showed severe structural changes in all studied groups. Systemic alterations in immune homeostasis in SLE affect the quality of developing oocytes, which is evident from a young age. The data obtained is in line with the trend of reduced fertility in lupus-prone MRL/lpr mice. The phenomenon can be explained by changes in the microenvironment of the relevant organs and close connection between ovulation and inflammatory processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

Data is available from the corresponding author upon reasonable request.

References

  1. Pons-Estel GJ, Ugarte-Gil MF, Alarcón GS. Epidemiology of systemic lupus erythematosus. Expert Rev Clin Immunol. 2017;13(8):799–814. https://doi.org/10.1080/1744666X.2017.1327352.

    Article  CAS  PubMed  Google Scholar 

  2. Klein SL, Flanagan KL. Sex differences in immune responses. Nat Rev Immunol. 2016;16(10):626. https://doi.org/10.1038/nri.2016.90.

    Article  CAS  PubMed  Google Scholar 

  3. Lasrado N, Jia T, Massilamany C, Franco R, Illes Z, Reddy J. Mechanisms of sex hormones in autoimmunity: focus on EAE. Biol Sex Differ. 2020;11(1):1–14. https://doi.org/10.1186/s13293-020-00325-4.

    Article  Google Scholar 

  4. Cutolo M, Capellino S, Sulli A, Serioli B, Secchi ME, Villaggio B, et al. Estrogens and autoimmune diseases. Ann N Y Acad Sci. 2006;1089(1):538–47. https://doi.org/10.1196/annals.1386.043.

    Article  CAS  PubMed  Google Scholar 

  5. Tabor DE, Gould KA. Estrogen receptor alpha promotes lupus in (NZB× NZW) F1 mice in a B cell intrinsic manner. Clin Immunol. 2017;174:41–52. https://doi.org/10.1016/j.clim.2016.10.011.

    Article  CAS  PubMed  Google Scholar 

  6. Vera-Lastra O, Jara LJ, Espinoza LR. Prolactin and autoimmunity. Autoimmun Rev. 2002;1(6):360–4. https://doi.org/10.1016/s1568-9972(02)00081-2.

    Article  CAS  PubMed  Google Scholar 

  7. Elbourne K, Keisler D, McMurray R. Differential effects of estrogen and prolactin on autoimmune disease in the NZB/NZW F1 mouse model of systemic lupus erythematosus. Lupus. 1998;7(6):420–7. https://doi.org/10.1191/096120398678920352.

    Article  CAS  PubMed  Google Scholar 

  8. Field SL, Dasgupta T, Cummings M, Orsi NM. Cytokines in ovarian folliculogenesis, oocyte maturation and luteinisation. Mol Reprod Dev. 2014;81(4):284–314. https://doi.org/10.1002/mrd.22285.

    Article  CAS  PubMed  Google Scholar 

  9. Imai F, Kishi H, Nakao K, Nishimura T, Minegishi T. IL-6 up-regulates the expression of rat LH receptors during granulosa cell differentiation. Endocrinology. 2014;155(4):1436–44. https://doi.org/10.1210/en.2013-1821.

    Article  CAS  PubMed  Google Scholar 

  10. Fauser BC, Tarlatzis BC, Rebar RW, Legro RS, Balen AH, Lobo R, et al. Consensus on women’s health aspects of polycystic ovary syndrome (PCOS): the Amsterdam ESHRE/ASRM-Sponsored 3rd PCOS Consensus Workshop Group. Fertil Steril. 2012;97(1):28-38. e25. https://doi.org/10.1016/j.fertnstert.2011.09.024.

    Article  PubMed  Google Scholar 

  11. Jungheim ES, Moley KH. Current knowledge of obesity’s effects in the pre-and periconceptional periods and avenues for future research. Am J Obstet Gynecol. 2010;203(6):525–30. https://doi.org/10.1016/j.ajog.2010.06.043.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Chavarro JE, Rich-Edwards JW, Rosner BA, Willett WC. Diet and lifestyle in the prevention of ovulatory disorder infertility. Obstet Gynecol. 2007;110(5):1050–8. https://doi.org/10.1097/01.AOG.0000287293.25465.e1.

    Article  PubMed  Google Scholar 

  13. Calongos G, Hasegawa A, Komori S, Koyama K. Harmful effects of anti-zona pellucida antibodies in folliculogenesis, oogenesis, and fertilization. J Reprod Immunol. 2009;79(2):148–55. https://doi.org/10.1016/j.jri.2008.06.003.

    Article  CAS  PubMed  Google Scholar 

  14. Otani Y, Ichii O, Otsuka-Kanazawa S, Chihara M, Nakamura T, Kon Y. MRL/MpJ-Fas lpr mice show abnormalities in ovarian function and morphology with the progression of autoimmune disease. Autoimmunity. 2015;48(6):402–11. https://doi.org/10.3109/08916934.2015.1031889.

    Article  CAS  PubMed  Google Scholar 

  15. Brunet S, Maro B. Cytoskeleton and cell cycle control during meiotic maturation of the mouse oocyte: integrating time and space. Reproduction. 2005;130(6):801–11. https://doi.org/10.1530/rep.1.00364.

    Article  CAS  PubMed  Google Scholar 

  16. Tchorbanov AI, Voynova EN, Mihaylova NM, Todorov TA, Nikolova M, Yomtova VM, et al. Selective silencing of DNA-specific B lymphocytes delays lupus activity in MRL/lpr mice. Eur J Immunol. 2007;37(12):3587–96. https://doi.org/10.1002/eji.200737143.

    Article  CAS  PubMed  Google Scholar 

  17. Papp K, Végh P, Tchorbanov A, Vassilev T, Erdei A, Prechl J. Progression of lupus-like disease drives the appearance of complement-activating IgG antibodies in MRL/lpr mice. Rheumatology. 2010;49(12):2273–80. https://doi.org/10.1093/rheumatology/keq278.

    Article  CAS  PubMed  Google Scholar 

  18. Bradyanova S, Mihaylova N, Chipinski P, Manassiev Y, Herbáth M, Kyurkchiev D, et al. Anti-ANX A1 antibody therapy in MRL/lpr murine model of systemic lupus erythematosus. Arch Immunol Ther Exp. 2021;69(1):1–12. https://doi.org/10.1007/s00005-021-00624-7.

    Article  CAS  Google Scholar 

  19. Mihaylova N, Bradyanova S, Chipinski P, Chausheva S, Kyurkchiev D, Tchorbanov AI. Monoclonal antibody therapy that targets phospholipid-binding protein delays lupus activity in MRL/lpr mice. Scand J Immunol. 2020;92(3):e12915. https://doi.org/10.1111/sji.12915.

    Article  CAS  PubMed  Google Scholar 

  20. Delimitreva SM, Boneva GV, Chakarova IV, Hadzhinesheva VP, Zhivkova RS, Markova MD, et al. Defective oogenesis in mice with pristane-induced model of systemic lupus. J Reprod Immunol. 2021;148:103370. https://doi.org/10.1016/j.jri.2021.103370.

    Article  CAS  PubMed  Google Scholar 

  21. Nikolova V, Chakarova I, Zhivkova R, Markova M, Delimitreva S. Comparison of in vitro matured oocytes from two inbred mouse strains and their F1 hybrids. Embryol (Sofia). 2012;7(1):10–4.

    Google Scholar 

  22. Rosenblum MD, Remedios KA, Abbas AK. Mechanisms of human autoimmunity. J Clin Investig. 2015;125(6):2228–33. https://doi.org/10.1172/JCI78088.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Moulton VR. Sex hormones in acquired immunity and autoimmune disease. Front Immunol. 2018;9:2279. https://doi.org/10.3389/fimmu.2018.02279.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Dragin N, Nancy P, Villegas J, Roussin R, Le Panse R, Berrih-Aknin S. Balance between estrogens and proinflammatory cytokines regulates chemokine production involved in thymic germinal center formation. Sci Rep. 2017;7(1):7970. https://doi.org/10.1038/s41598-017-08631-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Desai MK, Brinton RD. Autoimmune disease in women: endocrine transition and risk across the lifespan. Front Endocrinol. 2019;10:265. https://doi.org/10.3389/fendo.2019.00265.

    Article  Google Scholar 

  26. Carp HJ, Selmi C, Shoenfeld Y. The autoimmune bases of infertility and pregnancy loss. J Autoimmunity. 2012;38(2–3):J266–74. https://doi.org/10.1016/j.jaut.2011.11.016.

    Article  CAS  Google Scholar 

  27. Chighizola CB, Raimondo MG, Meroni PL. Does APS impact women’s fertility? Curr Rheumatol Rep. 2017;19(6):33. https://doi.org/10.1007/s11926-017-0663-7.

    Article  PubMed  Google Scholar 

  28. Stamm B, Barbhaiya M, Siegel C, Lieber S, Lockshin M, Sammaritano L. Infertility in systemic lupus erythematosus: what rheumatologists need to know in a new age of assisted reproductive technology. Lupus Sci Med. 2022;9(1):e000840. https://doi.org/10.1136/lupus-2022-000840.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Gao R, Deng W, Meng C, Cheng K, Zeng X, Qin L. Combined treatment of prednisone and hydroxychloroquine may improve outcomes of frozen embryo transfer in antinuclear antibody-positive patients undergoing IVF/ICSI treatment. Lupus. 2021;30(14):2213–20. https://doi.org/10.1177/09612033211055816.

    Article  CAS  PubMed  Google Scholar 

  30. Mao R, Wang X, Long R, Wang M, Jin L, Zhu L. A new insight into the impact of systemic lupus erythematosus on oocyte and embryo development as well as female fertility. Front Immunol. 2023;23(14):1132045. https://doi.org/10.3389/fimmu.2023.1132045.

    Article  CAS  Google Scholar 

  31. Yi X, Huang C, Huang C, et al. Fecal microbiota from MRL/lpr mice exacerbates pristane-induced lupus. Arthritis Res Ther. 2023;25:42. https://doi.org/10.1186/s13075-023-03022-w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hosotani M, Ichii O, Nakamura T, Masum MA, Otani Y, Otsuka-Kanazawa S, Elewa YHA, Kon Y. MRL/MpJ mice produce more oocytes and exhibit impaired fertilisation and accelerated luteinisation after superovulation treatment. Reprod Fertil Dev. 2019;31(4):760–73. https://doi.org/10.1071/RD18319.

    Article  CAS  PubMed  Google Scholar 

  33. Fu B, Wang F, Sun R, Ling B, Tian Z, Wei H. CD11b and CD27 reflect distinct population and functional specialization in human natural killer cells. Immunology. 2011;133(3):350–9. https://doi.org/10.1111/j.1365-2567.2011.03446.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Touma Z, Gladman DD. Current and future therapies for SLE: obstacles and recommendations for the development of novel treatments. Lupus Sci Med. 2017;4(1):e000239. https://doi.org/10.1136/lupus-2017-000239.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Durcan L, Petri M. Why targeted therapies are necessary for systemic lupus erythematosus. Lupus. 2016;25(10):1070-9.30. https://doi.org/10.1177/0961203316652489.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Sobhy N, Niazy MH, Kamal A. Lymphopenia in systemic lupus erythematosus patients: is it more than a laboratory finding? Egypt Rheumatologist. 2020;42(1):23–6. https://doi.org/10.1016/j.ejr.2019.04.003.

    Article  Google Scholar 

  37. Codner E, Merino P, Tena-Sempere M. Female reproduction and type 1 diabetes: from mechanisms to clinical findings. Hum Reprod Update. 2012;18(5):568–85. https://doi.org/10.1093/humupd/dms024.

    Article  CAS  PubMed  Google Scholar 

  38. Komatsu K, Manabe N, Kiso M, Shimabe M, Miyamoto H. Changes in localization of immune cells and cytokines in corpora lutea during luteolysis in murine ovaries. J Exp Zool A Comp Exp Biol. 2003;296(2):152–9. https://doi.org/10.1002/jez.a.10246.

    Article  CAS  PubMed  Google Scholar 

  39. Sirotkin AV. Cytokines: signalling molecules controlling ovarian functions. Int J Biochem Cell Biol. 2011;43(6):857–61. https://doi.org/10.1016/j.biocel.2011.03.001.

    Article  CAS  PubMed  Google Scholar 

  40. Canipari R. Oocyte–granulosa cell interactions. Hum Reprod Update. 2000;6(3):279–89. https://doi.org/10.1093/humupd/6.3.279.

    Article  CAS  PubMed  Google Scholar 

  41. Ortona E, Pierdominici M, Maselli A, Veroni C, Aloisi F, Shoenfeld Y. Sex-based differences in autoimmune diseases. Annali dell’Istituto Super di Sanita. 2016;52(2):205–12. https://doi.org/10.4415/ANN_16_02_121.

    Article  CAS  Google Scholar 

  42. Nikolova V, Delimitreva S, Chakarova I, Zhivkova R, Hadzhinesheva V, Markova M. Dynamics of lamins B and A/C and nucleoporin Nup160 during meiotic maturation in mouse oocytes. Folia Biol. 2017;63(1):6.

    Article  CAS  Google Scholar 

  43. Tkachenko O, Scheerer-Bernhard J, Delimitreva S, Wedi E, Valle R, Heistermann M, et al. A retrospective analysis of adverse effects of an in vivo fluoroquinolone antibiotic enrofloxacin treatment on oocyte quality in the common marmoset. Reprod Toxicol. 2018;75:86–95. https://doi.org/10.1016/j.reprotox.2017.12.004.

    Article  CAS  PubMed  Google Scholar 

  44. Delimitreva S. The odd behavior of the nuclei in maturing mammalian oocytes and zygotes. Acta Morphol et Anthropol. 2022;29:3–4.

    Google Scholar 

Download references

Funding

This study was supported by the Medical University of Sofia (grants ref. 25/2016, 65/2018); the European Fund for regional development through Operational Program Science and Education for Smart Growth 2014—2020, Grant BG05M2OP001-1.002–0001-C04 “Fundamental Translational and Clinical Investigations on Infections and Immunity”); and National Science Fund, Bulgaria, grant number [КP-06-H53/8/2021].

Author information

Authors and Affiliations

Authors

Contributions

G. B.: investigation, methodology, formal analysis, writing – original draft; I. C., V. H., R. Z., M. M., V. N., A. K., N. Mladenov: investigation, methodology, visualization; S. B.: investigation, methodology, formal analysis; N. Mihaylova: methodology, formal analysis; S. D., A. T,: conceptualization, methodology, formal analysis, writing – review and editing, supervision.

Corresponding authors

Correspondence to Stefka Delimitreva or Andrey Tchorbanov.

Ethics declarations

Competing interests

The authors declare no competing interests.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Delimitreva, S., Boneva, G., Chakarova, I. et al. Lupus progression deteriorates oogenesis quality in MRL/lpr mice. Immunol Res (2024). https://doi.org/10.1007/s12026-024-09489-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12026-024-09489-2

Keywords

Navigation