Skip to main content
Log in

SIT1 identifies circulating hypoactive T cells with elevated cytotoxic molecule secretion in systemic lupus erythematosus patients

  • RESEARCH
  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

This study aims to elucidate the expression and functionality of SIT1 in circulating CD8/CD4 + T cells in humans and to delineate its significance in systemic lupus erythematosus (SLE) patients. We employed multiparametric flow cytometry to investigate the expression of SIT1 in circulating CD8/CD4 + T cells and their respective subsets, comparing healthy controls (HCs) with SLE patients. Furthermore, we assessed the levels of granzyme B, perforin, IL-17, and IFN-γ in SIT1-related CD8/CD4 + T cells from both HCs and SLE patients, both before and after PMA stimulation. Clinically, we conducted receiver operating characteristic curve analysis and correlation analysis to evaluate the clinical relevance of SIT1-related CD8/CD4 + T cells in SLE patients. SIT1 exhibited higher expression in CD4 + T cells, with SIT1 − T cells demonstrating elevated levels of granzyme B, perforin, and IFN-γ compared to SIT1 + T cells. PMA-stimulated T cells exhibited reduced SIT1 expression compared to unstimulated T cells. SLE patients displayed increased SIT1 + proportions in CD8 + T cells and decreased SIT1 + CD4 + T cell numbers. Additionally, SIT1 + cells in SLE patients exhibited significantly higher levels of granzyme B and perforin compared to HCs. SIT1 + cells demonstrated significant associations with clinical indicators in SLE patients, with indicators related to SIT1 proving valuable in the diagnosis of SLE patients. SIT1 is inversely correlated with T cell activation. In SLE patients, SIT1 expression is altered in T cells concomitant with an augmented secretion of cytotoxic molecules. This upregulation may contribute to the pathogenesis of SLE and enhance its diagnostic potential.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The data of this study are available from the corresponding author upon reasonable request.

Abbreviations

SIT1 :

Signaling threshold regulating transmembrane adaptor 1

SLE :

Systemic lupus erythematosus

HC :

Healthy control

TEM :

Effector memory T cell

TEMRA :

Effector memory T cells reexpressing CD45RA

TCM :

Central memory cell

Tn :

Naive T cell

MFI :

Mean fluorescence intensity

NF-AT :

Nuclear factor of T cells

PBMC :

Peripheral blood mononuclear cells

PKC :

Protein kinase C

PLC :

Phospholipase C

C4 :

Complement component 4

CRP :

C-Reactive Protein

ESR :

Erythrocyte sedimentation rate

FBS :

Fetal bovine serum

GZMB :

Granzyme B

IgA :

Immunoglobulin A

IgG :

Immunoglobulin G

IgM :

Immunoglobulin M

ITIMs :

Immunoreceptor tyrosine-based inhibitory motifs

AUC :

Area under the curve

ROC :

Receiver operating characteristic curve

References

  1. Mills JA. Systemic lupus erythematosus. N Engl J Med. 1994;330(26):1871–9.

    Article  CAS  PubMed  Google Scholar 

  2. Kiriakidou M, Ching CL. Systemic Lupus Erythematosus. Ann Intern Med. 2020;172(11):Itc81–96.

    Article  PubMed  Google Scholar 

  3. Rasaratnam I, Ryan PF. Systemic lupus erythematosus. Med J Aust. 1997;166(5):266–70.

    Article  CAS  PubMed  Google Scholar 

  4. Tian J, et al. Global epidemiology of systemic lupus erythematosus: a comprehensive systematic analysis and modelling study. Ann Rheum Dis. 2023;82(3):351–6.

    Article  PubMed  Google Scholar 

  5. Li H, et al. Abnormalities of T cells in systemic lupus erythematosus: new insights in pathogenesis and therapeutic strategies. J Autoimmun. 2022;132:102870.

    Article  CAS  PubMed  Google Scholar 

  6. Hedrich CM, et al. cAMP response element modulator α controls IL2 and IL17A expression during CD4 lineage commitment and subset distribution in lupus. Proc Natl Acad Sci U S A. 2012;109(41):16606–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wong CK, et al. Hyperproduction of IL-23 and IL-17 in patients with systemic lupus erythematosus: implications for Th17-mediated inflammation in auto-immunity. Clin Immunol. 2008;127(3):385–93.

    Article  CAS  PubMed  Google Scholar 

  8. Marie-Cardine A, et al. SHP2-interacting transmembrane adaptor protein (SIT), a novel disulfide-linked dimer regulating human T cell activation. J Exp Med. 1999;189(8):1181–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Pfrepper KI, et al. Structural and functional dissection of the cytoplasmic domain of the transmembrane adaptor protein SIT (SHP2-interacting transmembrane adaptor protein). Eur J Immunol. 2001;31(6):1825–36.

    Article  CAS  PubMed  Google Scholar 

  10. Simeoni L, et al. The transmembrane adapter protein SIT regulates thymic development and peripheral T-cell functions. Mol Cell Biol. 2005;25(17):7557–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Arndt B, et al. The transmembrane adaptor protein SIT inhibits TCR-mediated signaling. PLoS ONE. 2011;6(9):e23761.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wilkinson B, Wang H, Rudd CE. Positive and negative adaptors in T-cell signalling. Immunology. 2004;111(4):368–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Voskoboinik I, Whisstock JC, Trapani JA. Perforin and granzymes: function, dysfunction and human pathology. Nat Rev Immunol. 2015;15(6):388–400.

    Article  CAS  PubMed  Google Scholar 

  14. Cao X, et al. Granzyme B and perforin are important for regulatory T cell-mediated suppression of tumor clearance. Immunity. 2007;27(4):635–46.

    Article  CAS  PubMed  Google Scholar 

  15. Catalfamo M, Henkart PA. Perforin and the granule exocytosis cytotoxicity pathway. Curr Opin Immunol. 2003;15(5):522–7.

    Article  CAS  PubMed  Google Scholar 

  16. Chen PM, Tsokos GC. The role of CD8+ T-cell systemic lupus erythematosus pathogenesis: an update. Curr Opin Rheumatol. 2021;33(6):586–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Xu S, Cao X. Interleukin-17 and its expanding biological functions. Cell Mol Immunol. 2010;7(3):164–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ritzmann F, et al. IL-17 cytokines and chronic lung diseases. Cells. 2022;11(14):2132.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Liu W, Zhang S, Wang J. IFN-γ, should not be ignored in SLE. Front Immunol. 2022;13:954706.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ciurtin C, et al. CD8+ T-cells in juvenile-onset SLE: from pathogenesis to comorbidities. Front Med (Lausanne). 2022;9:904435.

    Article  PubMed  Google Scholar 

  21. Tan EM, et al. The 1982 revised criteria for the classification of systemic lupus erythematosus. Arthritis Rheum. 1982;25(11):1271–7.

    Article  CAS  PubMed  Google Scholar 

  22. Tian Y, et al. Unique phenotypes and clonal expansions of human CD4 effector memory T cells re-expressing CD45RA. Nat Commun. 2017;8(1):1473.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Takahama Y, Nakauchi H. Phorbol ester and calcium ionophore can replace TCR signals that induce positive selection of CD4 T cells. J Immunol. 1996;157(4):1508–13.

    Article  CAS  PubMed  Google Scholar 

  24. Kosalka J, Jakiela B, Musial J. Changes of memory B- and T-cell subsets in lupus nephritis patients. Folia Histochem Cytobiol. 2016;54(1):32–41.

    PubMed  Google Scholar 

  25. Posevitz V, et al. Regulation of T cell homeostasis by the transmembrane adaptor protein SIT. J Immunol. 2008;180(3):1634–42.

    Article  CAS  PubMed  Google Scholar 

  26. Devarajan P, Chen Z. Autoimmune effector memory T cells: the bad and the good. Immunol Res. 2013;57(1–3):12–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Verma K, et al. Human CD8+ CD57- TEMRA cells: Too young to be calledold”. PLoS ONE. 2017;12(5):e0177405.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by grants from the National Natural Science Foundation of China (82271755, 81871230) and Peking University People’s Hospital Scientific Research Development Funds (RZ 2022–06).

Author information

Authors and Affiliations

Authors

Contributions

CL took charge of all the work and participated in its design. AB and AH conducted most of the experiments and drafted the manuscript. QL and ZZ analyzed the data. XZ and MZ did part of the cellular experiments. ZY did part of the clinical measurements. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Chen Liu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hasimu, A., Bahabayi, A., Xiong, Z. et al. SIT1 identifies circulating hypoactive T cells with elevated cytotoxic molecule secretion in systemic lupus erythematosus patients. Immunol Res (2024). https://doi.org/10.1007/s12026-024-09481-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12026-024-09481-w

Keywords

Navigation